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ABSTRACT

We show norm estimates for the sum of independent random variables

in noncommutative Lp-spaces for 1 < p < ∞, following our previous

work. These estimates generalize the classical Rosenthal inequality in the

commutative case. As applications, we derive an equivalence for the p-

norm of the singular values of a random matrix with independent entries,

and characterize those symmetric subspaces and unitary ideals which can

be realized as subspaces of a noncommutative Lp for 2 < p < ∞.

0. Introduction and preliminaries

This paper is a continuation of our previous work [JX1] on the investigation

of noncommutative martingale inequalities. The classical theory of martingale
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inequalities has a long tradition in probability. It is well-known today that the

applications of the works of Burkholder and his collaborators range from clas-

sical harmonic analysis to stochastic differential equations and the geometry

of Banach spaces. When proving the estimates for the conditioned (or little)

square function (cf. [Bu, BuG]), Burkholder was aware of Rosenthal’s result

[Ro] on sums of independent random variables. Here we proceed differently and

prove the noncommutative Rosenthal inequality along the same line as the non-

commutative Burkholder inequality from [JX1]. This slightly modified proof

yields a better constant. The main intention of this paper is to illustrate the

usefulness of the conditioned square function by several examples. For many ap-

plications it is important to consider generalized notions of independence. This

will allow us to explore applications toward random matrices and symmetric

subspaces of noncommutative Lp-spaces.

Our estimates on random matrices are motivated by the following noncommu-

tative Khintchine inequality of Lust-Piquard [LP]. Let (εij) be an independent

Rademacher family on a probability space (Ω, µ) and let (eij) be the canonical

matrix units of B(`2). Then for any 2 ≤ p <∞ there exists a positive constant

cp, depending only on p, such that for scalar coefficients (aij)

E

∥
∥
∥
∥

∑

ij

εij aij eij

∥
∥
∥
∥

Sp

∼cp max

{(
∑

i

(
∑

j

|aij |2
)p/2)1/p

;

(
∑

j

(
∑

i

|aij |2
)p/2

)1/p
}

,

where Sp denotes the usual Schatten p-class. Recall that for a matrix a = (aij)

‖a‖Sp =

[
∑

n

λn(|a|)p

]1/p

,

where the λn(|a|) are the eigenvalues of |a|, arranged in decreasing order and

counted according to their multiplicities. In the noncommutative setting it is

natural to replace (εij) by a noncommutative independent family and the scalar

coefficients aij by operator coefficients. Here we just mention, for illustration,

the following special case and refer to section 3 for more information. Let

(fij) ⊂ Lp(Ω, µ) be a matrix of independent mean zero random variables. Then
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for 2 ≤ p <∞
∥
∥
∥
∥

∑

ij

fij ⊗ eij

∥
∥
∥
∥

Lp(Ω;Sp)

∼c p

max

{(
∑

ij

‖fij‖p
p

)1/p

,

(
∑

i

(
∑

j

‖fij‖2
2

)p/2)1/p

,

(
∑

j

(
∑

i

‖fij‖2
2

)p/2
)1/p}

and for p < 2 (with p′ denoting the conjugate index of p)

∥
∥
∥
∥

∑

ij

fij ⊗ eij

∥
∥
∥
∥

Lp(Ω;Sp)

∼c p′

inf

{(
∑

ij

‖dij‖p
p

)1/p

+

(
∑

i

(
∑

j

‖gij‖2
2

)p/2)1/p

+

(
∑

j

(
∑

i

‖hij‖2
2

)p/2)1/p}

,

where the infimum is taken over all decompositions fij = dij + gij + hij with

mean zero variables dij , gij and hij , which, for each couple (i, j), are measurable

with respect to the σ-algebra generated by fij .

The equivalence above, for p ≥ 2, is a direct consequence of our noncommu-

tative Rosenthal inequality in Section 2. As usual, the case p < 2 is dealt with

by duality. Sections 2 and 3 are devoted to the Rosenthal inequalities for p ≥ 2

and p < 2, respectively. The random variables we consider are general inde-

pendent variables in noncommutative Lp-spaces (including the type III case).

In contrast with the classical case where there exist a unique independence,

one has several different notions of independence in the noncommutative set-

ting. Introduced in Section 1, our definition of independence embraces the most

commonly used noncommutative notions of independence. These include the

usual tensor independence and Voiculescu’s freeness.

In the light of the recent concept of noncommutative maximal functions, it

would be desirable to have a perfect noncommutative analogue of the classi-

cal Burkholder inequality by replacing the diagonal term ‖(dk)‖`p(Lp) by the

maximal term ‖(dk)‖Lp(`∞). This is indeed possible. We will make up for

it in Section 4. The same variant is, of course, true for the noncommutative

Rosenthal inequality.
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Symmetric subspaces of Lp-spaces are motivated by probabilistic notions

of exchangeable random variables. In the commutative situation, the mem-

oir of Johnson, Maurey, Schechtman and Tzafriri [JMST] contains an impres-

sive amount of information and many sophisticated applications of probabilistic

techniques. As applications of the noncommutative Burkholder/Rosenthal in-

equalities, we will extend some of their results to the noncommutative setting

in section 6. Below is an elementary example. Let A and M be von Neumann

algebras and 2 ≤ p <∞. Let (xk)1≤k≤n ⊂ Lp(M) and λ > 0 such that

∥
∥
∥
∥

n∑

k=1

εkaπ(k) ⊗ xk

∥
∥
∥
∥

p

≤ λ

∥
∥
∥
∥

n∑

k=1

ak ⊗ xk

∥
∥
∥
∥

p

holds for all εk = ±1, all permutations π on {1, . . . , n} and coefficients ak ∈
Lp(A). Then there are constants α, β and γ, depending only on (xk), such that

for all ak ∈ Lp(A)

∥
∥
∥
∥

n∑

k=1

ak ⊗ ek

∥
∥
∥
∥

p

∼cp,λ

max

{

α

( n∑

k=1

‖ak‖p
p

)1/p

, β

∥
∥
∥
∥

( n∑

k=1

a∗kak

)1/2∥
∥
∥
∥

p

, γ

∥
∥
∥
∥

( n∑

k=1

aka
∗
k

)1/2∥
∥
∥
∥

p

}

.

As a consequence of this statement (with A = C), we deduce that `p and `2 are

the only Banach spaces with a symmetric basis embedding into a noncommu-

tative Lp for 2 < p < ∞. On the other hand, at the operator space level, we

have four spaces `p, Cp, Rp and Cp ∩Rp, where Cp and Rp are respectively the

column and row subspaces of Sp. In the same spirit, we also characterize the

unitary ideals isomorphic to subspaces of a noncommutative Lp for 2 < p <∞
in Section 7.

In the remainder of this introduction we give some necessary preliminaries

and notation. We use standard notation from von Neumann algebra theory

(see, e.g., [KR, T2, St]). For noncommutative Lp-spaces we follow the notation

system of [JX1], and refer there for more details and all unexplained notions,

especially those on martingales. As in [JX1], the noncommutative Lp-spaces

used in this paper are those constructed by Haagerup [H1]. We will work

under the standard assumptions from [JX1]. In particular, M is a σ-finite

von Neumann algebra equipped with a normal faithful state ϕ. The Haagerup

noncommutative Lp-spaces associated with (M, ϕ) are denoted by Lp(M). We
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denote by D the density of ϕ in the space L1(M) such that

ϕ(x) = tr(xD), x ∈ M,

where tr : L1(M) → C is the distinguished tracial functional. The norm of

Lp(M) is denoted by ‖ ‖p. Recall that MD1/p is dense in Lp(M) for any

0 < p < ∞. More generally, D(1−θ)/pMaD
θ/p is also dense in Lp(M) for any

0 ≤ θ ≤ 1, where Ma denotes the family of all analytic elements with respect

to the modular group σϕ
t of ϕ.

Let N be a von Neumann subalgebra of M (i.e., a w*-closed involutive subal-

gebra containing the unit of M). We say that N is ϕ-invariant if σϕ
t (N ) ⊂ N

for all t ∈ R. According to Takesaki [T1], there exists a unique normal faithful

conditional expectation E : M → N such that ϕ ◦ E = ϕ. Recall that E is

characterized by

ϕ(E(x)y) = ϕ(xy) , x ∈ M, y ∈ N .

Note that E commutes with the modular group σϕ
t of ϕ. Namely, σϕ

t ◦ E =

E ◦ σϕ
t . In these circumstances, σϕ

t

∣
∣
N is the modular group of ϕ

∣
∣
N , and the

noncommutative Lp(N ) associated to (N , ϕ
∣
∣
N ) can be naturally isometrically

identified with a subspace of Lp(M). With this identification, the density of

ϕ
∣
∣
N in L1(N ) coincides with D. All these allow us to not distinguish ϕ, σϕ

t and

D and their respective restrictions to N .

For 1 ≤ p < ∞, the conditional expectation E extends to a contractive

projection Ep from Lp(M) onto Lp(N ) densely defined by

Ep(xD1/p) = E(x)D1/p , x ∈ M.

Ep is also determined by

Ep(D(1−θ)/pxDθ/p) = D(1−θ)/pE(x)Dθ/p , x ∈ Ma , 0 ≤ θ ≤ 1 .

It is convenient to drop the index p. This is also justified by using Kosaki’s em-

bedding I : Lp(M) → L1(M), I(xD1/p) = xD since then E1(I(y)) = I(Ep(y)).

In this sense all maps Ep are induced by the same map E1.

Recall that if N = C, then E(x) = ϕ(x)1 for every x ∈ M; so E can be identi-

fied with ϕ. The action of E on Lp(M) is then given by E(x) = tr(xD1/p′

)D1/p,

where p′ denotes the conjugate index of p. Thus if additionally ϕ is tracial, we

still have E(x) = ϕ(x)1 for x ∈ Lp(M).
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We will frequently use the column, row spaces and their conditional versions.

Recall that for a finite sequence a = (ak) ⊂ Lp(M)

∥
∥a

∥
∥

Lp(M;`c
2)

=

∥
∥
∥
∥

(
∑

k

|ak|2
)1/2∥

∥
∥
∥

p

and
∥
∥a

∥
∥

Lp(M;`r
2)

=

∥
∥
∥
∥

(
∑

k

|a∗k|2
)1/2∥

∥
∥
∥

p

.

Then Lp(M; `c2) and Lp(M; `r2) are the completions of the family of all finite

sequences in Lp(M) with respect to ‖ ‖Lp(M;`c
2)

and ‖ ‖Lp(M;`r
2), respectively (in

the w*-topology for p = ∞). It is convenient to view Lp(M; `c2) and Lp(M; `r2)

as the first column and row subspaces of Lp(B(`2)⊗̄M), respectively.

Now let N be a ϕ-invariant von Neumann subalgebra of M with conditional

expectation E . Let p ≥ 2 and a = (ak) ⊂ Lp(M) be a finite sequence. Since

a∗kak ∈ Lp/2(M) and p/2 ≥ 1, E(a∗kak) is well-defined and we can consider

∥
∥a

∥
∥

Lp(M,E;`c
2)

=

∥
∥
∥
∥

(
∑

k

E(a∗kak)

)1/2∥
∥
∥
∥

p

.

According to [J1] (see also [JX1]), this defines a norm on the family of all

finite sequences in Lp(M). The corresponding completion (relative to the w*-

topology for p = ∞) is the conditional column space Lp(M, E ; `c2). Note that

if 2 ≤ p <∞, then finite sequences in MaD
1/p are dense in Lp(M, E ; `c2). The

latter density allows us to extend the definition to the range 1 ≤ p < 2. Let

a = (ak) ⊂ MD1/p with ak = bkD
1/p, bk ∈ M. Set

∥
∥a

∥
∥

Lp(M,E;`c
2)

=

∥
∥
∥
∥

(
∑

k

D1/p E(b∗kbk)D1/p

)1/2∥
∥
∥
∥

p

.

We have again a norm. The resulting completion is denoted by Lp(M, E ; `c2).

The conditional row space Lp(M, E ; `r2) is defined as the space of all (ak) such

that (a∗k) ∈ Lp(M, E ; `c2), equipped with the norm
∥
∥(ak)

∥
∥

Lp(M,E;`r
2)

=
∥
∥(a∗k)

∥
∥

Lp(M,E;`c
2)
.

The space Lp(M, E ; `c2) (resp., Lp(M, E ; `r2)) can be equally viewed as the first

column (resp., row) subspace of Lp(B(`2(N2))⊗̄M), indexed by a double index.

Lemma 0.1: Let 1 ≤ p <∞ and p′ be the index conjugate to p. Then

Lp(M, E ; `c2)∗ = Lp′(M, E ; `c2)

holds isometrically with respect to the antilinear duality bracket:

〈a, b〉 =
∑

tr(b∗kak) , a ∈ Lp(M, E ; `c2), b ∈ Lp′(M, E ; `c2).
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A similar statement holds for the conditional row spaces.

Proof. This is the column (or row) space version of [J1, Corollary 2.12]. The

proof there can be adapted to the present situation by considering M⊗̄B(`2)

and N⊗̄B(`2) in place of M and N , respectively. It then remains to note

that the column space Lp(M; `c2) is complemented in Lp(B(`2)⊗̄M). See also

the proof of [J1, Theorem 2.13], where instead of one conditional expectation,

a sequence of conditional expectations is involved (then the noncommutative

Stein inequality is needed). We omit the details.

The preceding notation will be kept in the remainder of the paper. Unless

explicitly stated otherwise, M will denote a von Neumann algebra equipped

with a normal faithful state ϕ. If N is a ϕ-invariant von Neumann subalgebra

of M, its associated conditional expectation will be often denoted by EN or

simply by E if no confusion can occur.

The first version of this paper was written immediately after the submission

of [JX1] (more than five years ago). Since then considerable progress has been

made on noncommutative martingale inequalities. We mention only [JX2, PaR,

R2, R3, R4], where, among many other results, the optimal orders of the best

constants in most noncommutative martingale inequalities are determined.

1. Independence

In this section, we first introduce the central notion for our formulation of the

noncommutative Rosenthal inequality, i.e., the independence. We then present

some natural examples of noncommutative independent variables. Our setup is

the following: N and Ak are ϕ-invariant von Neumann subalgebras of M such

that N ⊂ Ak for every k. The sequence (Ak) can be finite.

(I) We say that (Ak) are (faithfully) independent over N or with re-

spect to EN if for every k, EN (xy) = EN (x)EN (y) holds for all x ∈ Ak

and y in the von Neumann subalgebra generated by (Aj)j 6=k.

(II) We say that (Ak) are (faithfully) order independent over N or with

respect to EN if for every k ≥ 2, EV N(A1,...,Ak−1)(x) = EN (x) holds for

all x ∈ Ak, where V N(A1, . . . ,Ak−1) denotes the von Neumann subalge-

bra generated by A1, . . . ,Ak−1.
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(III) A sequence (xk) ⊂ Lp(M) is said to be faithfully (order) independent

with respect to EN if there exist Ak such that xk ∈ Lp(Ak) and (Ak)

is faithfully (order) independent with respect to EN .

Note that the subalgebra V N(A1, . . . ,Ak−1) is ϕ-invariant too, so the con-

ditional expectation EV N(A1,...,Ak−1) exists. Also note that the independence

in (I) can be defined for any family (without order). The adverb faithfully

refers to the faithfulness of the state ϕ. We will also consider the nonfaithful

case in Section 5. If no confusion can occur, we will often drop this adverb by

saying simply independent or order independent. If N = C, these notions are,

of course, with respect to the state ϕ

Remark 1.1: Let (Ak) be order independent over N . Then for every k

EV N(A1,...,Ak−1)(x) = EN (x), x ∈ Aj , j ≥ k.

Indeed, we have

EV N(A1,...,Ak−1)(x) = EV N(A1,...,Ak−1)

(
EV N(A1,...,Aj−1)(x)

)

= EV N(A1,...,Ak−1)

(
EN (x)

)
= EN (x).

It follows that if xk ∈ Lp(Ak) with EN (xk) = 0, then (xk) is a martingale

difference sequence with respect to the filtration
(
V N(A1, . . . ,Ak)

)

k≥1
.

Lemma 1.2: Assume that (Ak) is independent over N .

(i) (Ak) is order independent over N .

(ii) If xk ∈ Lp(Ak) satisfy EN(xk) = 0, 1 ≤ p ≤ ∞, then

∥
∥
∥
∥

n∑

k=1

εkxk

∥
∥
∥
∥

p

≤ 2

∥
∥
∥
∥

n∑

k=1

xk

∥
∥
∥
∥

p

, εk = ±1.

Proof. Let S be a subset of indices and BS = V N{Aj : j ∈ S}. Set ES = EBS .

Fix k /∈ S. Now let x ∈ Ak. We want to prove ES(x) = EN (x). For this, it

suffices to show

ϕ(xy) = ϕ(EN (x)y), y ∈ BS .

This equality immediately follows from the independence of (Ak) over N for

ϕ(xy) = ϕ(EN (xy)) = ϕ(EN (x)EN (y)) = ϕ(EN (EN (x)y)) = ϕ(EN (x)y).

If we apply this to the subset S = {1, . . . , k − 1}, we obtain (i). To prove

the second assertion, consider εk = ±1 and define S = {k : εk = 1}. By



Vol. 167, 2008 BURKHOLDER/ROSENTHAL INEQUALITIES 235

approximation by elements of the form xk = akD
1/p, ak ∈ Ak and EN (ak) = 0,

we see that

ES

( n∑

k=1

xk

)

=
∑

k∈S

xk +
∑

k/∈S

ES(xk) =
∑

k∈S

xk.

Since ES is a contraction on Lp(M),

∥
∥
∥
∥

∑

k∈S

xk

∥
∥
∥
∥

p

=

∥
∥
∥
∥
ES

( n∑

k=1

xk

)∥
∥
∥
∥

p

≤
∥
∥
∥
∥

n∑

k=1

xk

∥
∥
∥
∥

p

;

whence
∥
∥
∥
∥

n∑

k=1

εkxk

∥
∥
∥
∥

p

≤
∥
∥
∥
∥

∑

k∈S

xk

∥
∥
∥
∥

p

+

∥
∥
∥
∥

∑

k∈Sc

xk

∥
∥
∥
∥

p

≤ 2‖
n∑

k=1

xk‖p .

In the rest of this section we give some natural examples of independent

variables, which often occur in noncommutative probability.

Example 1.3: Classical independence. Let (Ω, µ) be a probability space, and let

(N , ψ) be a von Neumann algebra equipped with a normal faithful state ψ. Let

M = L∞(Ω)⊗̄N be the von Neumann algebra tensor product equipped with

the tensor product state ϕ = µ ⊗ ψ. We view N as a subalgebra of M in the

natural way. Then the conditional expectation EN is given by

EN (x) =

∫

Ω

xdµ , x ∈ M ,

where the integral is taken with respect to the w*-topology of M. Also recall

that the noncommutative Lp-space Lp(M) coincides with the usual Lp-space

Lp(Ω;Lp(N )) of p-integrable functions on Ω with values in Lp(N ). In this case,

the independence with respect to EN coincides with the classical independence of

vector-valued random variables. In particular, if (fn) ⊂ Lp(Ω) is an independent

sequence of random variables in the usual sense, then (fnan) is independent with

respect to EN for any (an) ⊂ Lp(N ).

Example 1.4: Tensor independence. This independence is the most transparent

generalization of the classical one to the noncommutative setting. Let (Ak, ϕk)

be a sequence of von Neumann algebras equipped with normal faithful states

ϕk. Let

(M, ϕ) =
⊗

k≥0

(Ak, ϕk)
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denote the corresponding von Neumann algebra tensor product. As usual, we

regard Ak as von Neumann subalgebras of M. It is clear that they are ϕ-

invariant. The conditional expectation EAk
is uniquely determined by

EAk
(a0 ⊗ · · · ⊗ am) =

[
∏

j 6=k

ϕj(aj)

]

ak, m ≥ 0.

Clearly, (Ak)k≥1 is independent over A0. If all Ak are commutative, we go back

to the classical case.

Example 1.5: Free independence. Our reference for this example is [VDN]. Let

(Ak)k≥1 be a sequence of von Neumann subalgebras of M, and let B be a

common von Neumann subalgebra of the Ak. Assume that there exist normal

faithful conditional expectations E : M → B and Ek : Ak → B. The sequence

(Ak)k≥1 is called free over B if

E(x1 · · ·xk) = 0

whenever xj ∈ Åij and i1 6= i2 6= · · · 6= ik, where Åk = kerEk. If B = C, we

get the freeness with respect to the state ϕ ∼ E . There exists an equivalent

way of formulating freeness by using reduced free product. Without loss of

generality we may assume that M is generated by the Ak. Then (M, E) can be

identified with the von Neumann algebra amalgamated reduced free product of

the (Ak, Ek) :

(M, E) = ∗̄
k≥1

B (Ak, Ek).

Assume in addition that B is σ-finite, and fix a normal faithful state φ on B.

Then ϕ = φ ◦ E is a normal faithful state on M and the Ak are ϕ-invariant.

One easily checks that freeness implies the independence in our sense.

Let us consider the particularly interesting case where all Ak are equal to

L∞(−2, 2), equipped with the Wigner measure

dµ(t) =
1

2π

√

4 − t2 dt.

Then the reduced free product (without amalgamation)

(M, ϕ) = ∗̄
k≥1

Ak

is a II1 factor with ϕ a normal faithful tracial state. Let xk ∈ Ak be given

by xk(t) = t. Then the sequence (xk) is free. This is a semicircular system in

Voiculescu’s sense. It is the free analogue of a standard Gaussian system.
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Semicircular systems admit a more convenient realization via Fock spaces.

Let us describe this briefly. Let H be a complex Hilbert space. The associated

free (or full) Fock space is defined by

F(H) =
⊕

n≥0

H⊗n,

where H⊗0 = C1l (1l being a unit vector, called vacuum), and H⊗n is the n-th

Hilbertian tensor power of H for n ≥ 1. The (left) creator associated with a

vector ξ ∈ H is the operator on F(H) uniquely determined by

c(ξ) ξ1 ⊗ · · · ⊗ ξn = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn

for any ξ1, . . . , ξn ∈ H . Here ξ1 ⊗ · · · ⊗ ξn is understood as the vacuum 1l if

n = 0. Its adjoint is given by

c(ξ)∗ ξ1 ⊗ · · · ⊗ ξn = 〈ξ1, ξ〉 ξ2 ⊗ · · · ⊗ ξn

(with c(ξ)∗1l = 0). This is the annihilator associated with ξ and is denoted by

a(ξ). We have the following free commutation relation:

a(η)c(ξ) = 〈ξ, η〉1, ξ, η ∈ H.

Now assume that H is the complexification of a real Hilbert space HR. For a

real ξ ∈ HR define

g(ξ) = c(ξ) + a(ξ).

Let Γ(H) be the von Neumann subalgebra of B(F(H)) generated by all g(ξ)

with real ξ ∈ HR:

Γ(H) =
{
g(ξ) : ξ ∈ HR

}′′
.

This is the free von Neumann algebra associated with H (or more precisely,

with HR). The vector state ϕ defined by the vacuum, x 7→ 〈x1l, 1l〉 is faithful

and tracial on Γ(H). If (ξk) is an orthonormal system of H consisting of real

vectors, then (g(ξk)) is a semicircular system.

The preceding Fock space construction can be deformed to get type III alge-

bras. For this, let H be separable and fix an orthonormal basis (e±k)k≥1 of H

consisting of real vectors. Let λ = (λk) be a sequence of positive numbers. Set

(1.1) gk = c(ek) +
√

λk a(e−k) , k ≥ 1 .

Let Γλ be the von Neumann algebra on F(H) generated by (gk), and let ϕλ be

the vector state on Γλ determined by the vacuum. Then (gk) is free in (Γλ, ϕλ).

This is a generalized circular system in Shlyakhtenko’s sense [S]. If all λk are
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equal to 1, Γλ becomes the previous free von Neumann algebra Γ(H) associated

with H . Otherwise, Γλ is a type III factor and the state ϕλ is called a free

quasi-free state.

Example 1.6: q-independence. The Fock space construction in the previous

example can be modified to embrace the so-called q-independence, −1 ≤ q ≤ 1,

introduced by Bożejko and Speicher [BS1, BS2, BKS]. Again, let H be the

complexification of a real Hilbert space HR. The associated q-Fock space Fq(H)

is defined by

Fq(H) =
⊕

n≥0

H⊗n,

where H⊗n is now equipped with the q-scalar product for every n ≥ 2. Recall

that F0(H) is the free Fock space discussed in the previous example, while

F1(H) and F−1(H) are the classical symmetric and antisymmetric Fock spaces,

respectively.

Given ξ ∈ H we define the corresponding creator cq(ξ) and annihilator aq(ξ)

similarly as in the free case. These are linear operators on Fq(H) determined

by the following conditions

cq(ξ) ξ1 ⊗ · · · ⊗ ξn = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn

and

a(ξ) ξ1 ⊗ · · · ⊗ ξn =

n∑

k=1

qk−1〈ξk, ξ〉 ξ1 ⊗ · · · ⊗
∨
ξk ⊗ · · · ⊗ ξn,

where
∨
ξk means that ξk is removed from the tensor product. cq(ξ) and aq(ξ)

are bounded operators if q < 1 and closable densely defined operators if q =

1. In the latter case, cq(ξ) and aq(ξ) also denote their closures. Again, we

have cq(ξ)∗ = aq(ξ). The creators and annihilators satisfy the following q-

commutation relations :

aq(ξ)cq(η) − q cq(η)aq(ξ) = 〈η, ξ〉1, ξ, η ∈ H.

In the cases of q = ±1 these are respectively the canonical commutation rela-

tions (CCR) and the canonical anticommutation relations (CAR).

Given a real vector ξ ∈ HR define

gq(ξ) = cq(ξ) + aq(ξ).

gq(ξ) is called a q-Gaussian variable. The q-von Neumann algebra Γq(H) asso-

ciated with H is the von Neumann algebra on Fq(H) generated by the gq(ξ)
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with real ξ. As in the free case, the vacuum expectation x 7→ 〈x1l, 1l〉 is a

normal faithful tracial state on Γq(H), denoted by τq. In particular, Γ0(H) is

the free von Neumann algebra considered previously. On the other hand, if ξ

and η are orthogonal, then g1(ξ) and g1(η) commute, while g−1(ξ) and g−1(η)

anticommute. Therefore, Γ1(H) is commutative, while Γ−1(H) is a Clifford

algebra.

Let K ⊂ H be a closed subspace, which is the complexification of KR ⊂ HR.

Then Γq(K) is a subalgebra of Γq(H). The associated conditional expectation

is given by the second quantization of the orthogonal projection from HR onto

KR. Now let (Hk) be a sequence of subspaces of H which are complexifica-

tions of pairwise orthogonal subspaces of HR. Each Γq(Hk) is identified with

the von Neumann subalgebra of Γq(H) generated by gq(ξ) with real ξ ∈ Hk.

Then the Γq(Hk) are independent with respect to τq. Consequently, if (ξk)k is

an orthonormal sequence of real vectors of H , (gq(ξk))k is independent. This

sequence (gq(ξk))k is called a q-semicircular system.

Shlyakhtenko’s generalized circular systems admit q-counterparts too. We

refer to [Hi] for more details. Here we briefly discuss only the case q = −1,

which is a reformulation of the classical construction of the Araki-Woods factors.

These latter factors are built using Pauli matrices as follows. We consider the

generators of the CAR algebra

(1.2) ak = 1 ⊗ · · · ⊗ 1 ⊗ e12
︸︷︷︸

k-th position

⊗1 ⊗ · · · ⊗ 1

in the algebraic tensor product
⊗

k≥1 M2, where, as usual, eij denote the matrix

units of M2 = B(`22). Fix a sequence (µk) ⊂ (0, 1), and consider the states

ϕk = (1 − µk)e11 + µke22 on M2. Then the tensor product state ϕ =
⊗

k≥1 ϕk

is a quasi-free state satisfying

ϕ(a∗i1 · · · a∗ir
aj1 · · · ajs) = δrs

s∏

l=1

δil,jl
µil

for all increasing sequences i1 < · · · < ir and j1 < · · · < js. We denote by W
the von Neumann algebra generated by the ak’s in the GNS construction with

respect to ϕ. Then W is a hyperfinite type III factor and (ak) are independent

with respect to ϕ.

Example 1.7: Group algebras. Consider a discrete group G. Let V N(G) ⊂
B(`2(G)) be the associated von Neumann algebra generated by the left regular
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representation λ : G→ B(`2(G)). More precisely, λ is defined by
(
λ(g)f

)
(h) = f(g−1h), f ∈ `2(G), h, g ∈ G ,

and V N(G) is generated by {λ(g) : g ∈ G}. Recall that V N(G) is also the w*-

closure in B(`2(G)) of the algebra of all finite sums
∑
α(g)λ(g) with α(g) ∈ C.

Let τG be the vector state on V N(G) determined by δe, where e is the identity

of G and (δg)g∈G is the canonical basis of `2(G). τG is a normal faithful tracial

state on V N(G). If H is a subgroup of G, then V N(H) is identified with

the von Neumann subalgebra of V N(G) generated by {λ(h) : h ∈ H}. The

corresponding conditional expectation EV N(H) is determined by

EV N(H)

[ ∑

g∈G

α(g)λ(g)
]

=
∑

g∈H

α(g)λ(g), α(g) ∈ C .

Now let (Gn) be an increasing sequence of subgroups of G and gn ∈ Gn \Gn−1.

Then it is easy to see that (λ(gn))n is order independent (but not independent

in general) with respect to τG. In particular, a sequence of free generators on a

free group is order independent. Moreover, it is clearly independent.

2. Noncommutative Rosenthal inequality: p ≥ 2

In this section we prove the noncommutative Rosenthal inequality in the case

p ≥ 2. In this section M will denote a von Neumann algebra with a normal

faithful state ϕ, and N ⊂ M a ϕ-invariant von Neumann subalgebra with

conditional expectation E = EN . Following [JX1], we will also need the diagonal

space `p(Lp(M)) whose norm will be denoted by ‖ ‖`p(Lp). In the remainder

of the paper, c will denote an absolute positive constant which may change

from line to line, and cp a positive constant depending only on p. The notation

A ∼c B will mean that A ≤ cB and B ≤ cA.

Theorem 2.1: Let 2 ≤ p < ∞ and (xk) ∈ Lp(M) be a finite sequence such

that E(xk) = 0.

(i) If (xk) is independent with respect to E , then

c

p

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ max

{

‖(xk)‖`p(Lp), ‖(xk)‖Lp(M,E;`c
2)
, ‖(xk)‖Lp(M,E;`r

2)

}

≤ 2

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

.
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(ii) If (xk) is order independent with respect to E , then

c

p2

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ max
{
‖(xk)‖`p(Lp), ‖(xk)‖Lp(M,E;`c

2)
, ‖(xk)‖Lp(M,E;`r

2)

}

≤ 2

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

.

Proof. (i) Let (Ak) be a sequence of ϕ-invariant von Neumann subalgebras of

M which are independent over N and such that xk ∈ Lp(Ak). Then by Lemma

1.2 (ii) and the fact that Lp(M) is of cotype p with constant 1, we obtain

‖(xk)‖`p(Lp) ≤ 2

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

.

On the other hand, by independence,

E(x∗kxj) = 0, k 6= j.

Thus, for x =
∑
xk, we have

∥
∥
∥
∥

∑

k

E(x∗kxk)

∥
∥
∥
∥

p/2

= ‖E(x∗x)‖p/2 ≤ ‖x∗x‖p/2 = ‖x‖2
p, .

Therefore the lower estimate for the norm of the sum is proved.

The main part is the proof of the upper estimate. First, let us observe that

this upper estimate is also true for 1 ≤ p ≤ 2 since

(2.1)

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ 2‖(xk)‖`p(Lp) .

Indeed, this inequality follows immediately from the unconditionality of (xk)

given by Lemma 1.2 (ii) and the type p property of Lp(M). To treat the case

p ≥ 2 we will use a standard iteration procedure. The key step is to show that

if the upper estimate is true for some p ≥ 1, then it is also true for 2p. This will

enable us to iterate, by using (2.1) as a starting point. Thus we assume that

for some p there exists a positive constant cp such that
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ cp max
{
‖(xk)‖`p(Lp), ‖(xk)‖Lp(M,E;`c

2)
, ‖(xk)‖Lp(M,E;`r

2)

}

for all xk ∈ Lp(Ak) with E(xk) = 0. Our aim is to prove the same estimate

for 2p. Let xk ∈ L2p(Ak) and E(xk) = 0. First, we apply the noncommutative
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Khintchine inequality (cf. [LPP] and also [P1] with the right order of the best

constant) and deduce from Lemma 1.2 that

(2.2)
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

2p

≤ 2 E

∥
∥
∥
∥

∑

k

εkxk

∥
∥
∥
∥

2p

≤ c
√
p max

{∥
∥
∥
∥

∑

k

x∗kxk

∥
∥
∥
∥

1/2

p

,

∥
∥
∥
∥

∑

k

xkx
∗
k

∥
∥
∥
∥

1/2

p

}

,

where (εk) is a Rademacher sequence and E denotes the corresponding expec-

tation. Let us consider the first square function on the right hand side. We

define the mean zero elements yk = x∗kxk − E(x∗kxk). By assumption, we have
∥
∥
∥
∥

∑

k

x∗kxk

∥
∥
∥
∥

p

≤
∥
∥
∥
∥

∑

k

E(x∗kxk)

∥
∥
∥
∥

p

+

∥
∥
∥
∥

∑

k

yk

∥
∥
∥
∥

p

≤
∥
∥
∥
∥

∑

k

E(x∗kxk)

∥
∥
∥
∥

p

+ cp max
{∥
∥(yk)

∥
∥

`p(Lp)
,

∥
∥(yk)

∥
∥

Lp(M,E;`c
2)

}

Moreover, if 1 ≤ p ≤ 2, we can disregard the second term in the maximum by

virtue of (2.1). Since E is a contraction on Lp(M), we have

‖(yk)‖`p(Lp) =

(
∑

k

∥
∥
∥
∥
x∗kxk − E(x∗kxk)

∥
∥
∥
∥

p

p

)1/p

≤ 2

(
∑

k

‖xk‖2p
2p

)1/p

.

Hence, for 1 ≤ p ≤ 2, we find

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

2p

≤ c
√

5p max
{
‖(xk)‖`2p(L2p(M)), ‖(xk)‖L2p(M,E;`c

2)
, ‖(xk)‖L2p(M,E;`r

2)

}
.

Now assume 2 < p <∞. We first note that

E(y2
k) = E

[(
x∗kxk − E(x∗kxk)

)∗(
x∗kxk − E(x∗kxk)

)]

= E(x∗kxkx
∗
kxk) − E(x∗kxk)E(x∗kxk) ≤ E(|xk|4).

Using [JX1, Lemma 5.2], we obtain

∥
∥
∥
∥

∑

k

E(|xk|4)

∥
∥
∥
∥

p/2

≤
∥
∥
∥
∥

∑

k

E(|xk|2)

∥
∥
∥
∥

(p−2)/(p−1)

p

(
∑

k

‖xk‖2p
2p

)1/(p−1)

.

By homogeneity, this implies
∥
∥
∥
∥

∑

k

E(|xk|4)

∥
∥
∥
∥

1/2

p/2

≤ max{‖(xk)‖2
`2p(L2p) , ‖(xk)‖2

L2p(M,E;`c
2)
}.
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Therefore we have proved that

‖(yk)‖Lp(M,E;`c
2)

≤ max
{∥
∥(xk)

∥
∥

2

`2p(L2p)
,
∥
∥(xk)

∥
∥

2

L2p(M,E;`c
2)

}
.

Applying the same arguments to xkx
∗
k and putting together all inequalities so

far obtained, we find
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

2p

≤ c(p(1 + 2cp))1/2 max
{
‖(xk)‖`2p(L2p), ‖(xk)‖L2p(M,E;`c

2)
, ‖(xk)‖L2p(M,E;`r

2)

}
.

It thus follows that

c2p ≤ c(p(1 + 2cp))1/2

for p > 2. We then deduce that c2p ≤ c′2p for some absolute constant c′.

Therefore, the induction argument works and we obtain assertion (i).

(ii) The proof of this part is almost the same as the previous one. The only

difference is that Lemma 1.2 is no longer at our disposal. In consequence, we

have to replace (2.2) by the noncommutative Burkholder-Gundy inequality from

[PX1, JX1] (see also [JX2] for the right order of the best constants):
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

2p

≤ cpmax

{∥
∥
∥
∥

∑

k

x∗kxk

∥
∥
∥
∥

1/2

p

,

∥
∥
∥
∥

∑

k

xkx
∗
k

∥
∥
∥
∥

1/2

p

}

.

This is true for (xk) is a martingale difference sequence. Indeed, since the von

Neumann subalgebra generated by the Ak is ϕ-invariant, we may assume that

this subalgebra is M itself. Then letting Mk = V N(A1, . . . ,Ak), we see that

(Mk) is an increasing filtration of subalgebras in the sense of [JX1], which

yields a noncommutative martingale structure in M. By Remark 1.1, (xk) is a

martingale difference sequence with respect to (Mk). The rest of the proof is

then the same as that of (i).

Remark 2.2: In the commutative case the best constant in the Rosenthal in-

equality is of order p/(1 + log p) as p → ∞ (cf. [JSZ]). In view of this result,

the constant of order p in the first inequality in Theorem 2.1 seems reasonable.

At the time of writing this paper we do not know whether this order is optimal.

Theorem 2.1 deals with independent mean zero variables. For general inde-

pendent variables, we have the following easy consequence. From now on we

will confine our attention only to independence. All subsequent results have

counterparts for order independence.
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Corollary 2.3: Let p and M be as in Theorem 2.1. Let (xk) ⊂ Lp(M) be

an independent sequence with respect to E . Then

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ cpmax

{∥
∥
∥
∥

∑

k

E(xk)

∥
∥
∥
∥

p

, ‖(xk)‖`p(Lp), ‖(xk)‖Lp(M,E;`c
2)
, ‖(xk)‖Lp(M,E;`r

2)

}

.

If additionally all xk are positive, the inverse inequality holds without constant.

Proof. Let yk = xk − E(xk). Then
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤
∥
∥
∥
∥

∑

k

E(xk)

∥
∥
∥
∥

p

+

∥
∥
∥
∥

∑

k

yk

∥
∥
∥
∥

p

.

Now applying Theorem 2.1 to the centered sequence (yk), we get an equivalence

for the second term on the right. Using triangle inequality and ‖E(xk)‖p ≤
‖xk‖p, we have

‖(yk)‖`p(Lp) ≤ 2‖(xk)‖`p(Lp) .

For the terms on the conditional square functions, we note that

E(|yk|2) = E(|xk|2) − |E(xk)|2 ≤ E(|xk|2).

Then we deduce the desired inequality. To prove the additional part, by the

contractivity of E on Lp(M)
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≥
∥
∥
∥
∥

∑

k

E(xk)

∥
∥
∥
∥

p

.

On the other hand, by Jensen’s inequality

(2.3)

∥
∥
∥
∥

∑

k

|xk|2
∥
∥
∥
∥

p/2

=

∥
∥
∥
∥
E

(∣
∣
∣
∣

∑

k

εkxk

∣
∣
∣
∣

2)∥
∥
∥
∥

p/2

≤ E

∥
∥
∥
∥

∑

k

εkxk

∥
∥
∥
∥

2

p

.

Note that since xk ≥ 0, −∑
xk ≤ ∑

εkxk ≤ ∑
xk for any εk = ±1; so

‖∑
εkxk‖p ≤ ‖∑

xk‖p. Therefore,

‖(xk)‖Lp(M,E;`c
2)

≤
∥
∥
∥
∥

(
∑

k

|xk|2
)1/2∥

∥
∥
∥

p

≤
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

.

For the diagonal term, it suffices to note the inequality

(2.4) ‖(xk)‖`p(Lp) ≤
∥
∥
∥
∥

(
∑

k

|xk|2
)1/2∥

∥
∥
∥

p

,
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which is obtained by interpolating the two cases p = 2 and p = ∞. Thus the

proof of the corollary is complete.

In the case N = C, our Rosenthal inequality takes a simpler form. Let us

formulate this explicitly as follows.

Corollary 2.4: Let 2 ≤ p < ∞, and let (xk) ⊂ Lp(M) be a sequence inde-

pendent with respect to ϕ such that tr(xkD
1/p′

) = 0. Then

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

∼cp max

{(
∑

k

‖xk‖p
p

)1/p

,

(
∑

k

tr[(x∗kxk + xkx
∗
k)D1−2/p]

)1/2}

.

In particular, if ϕ is tracial,

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

∼cp max

{(
∑

k

‖xk‖p
p

)1/p

,

(
∑

k

‖xk‖2
2

)1/2}

.

Proof. It suffices to observe that for any q ≥ 1 the conditional expectation EC

on Lq(M) is given by EC(x) = tr(xD1/q′

)D1/q.

In the same spirit, we have the following Khintchine type inequality.

Corollary 2.5: Keep the assumptions of Corollary 2.4 and assume in addition

that

0 < κ1 = inf
k

tr[(x∗kxk + xkx
∗
k)D1−2/p] and sup

k
‖xk‖p = κ2 <∞ .

Let A be another von Neumann algebra, and let (ak) ⊂ Lp(A). Then

∥
∥
∥
∥

∑

k

ak ⊗ xk

∥
∥
∥
∥

Lp(A⊗̄M)

∼cp,κ1,κ2

∥
∥
∥
∥

(
∑

k

a∗kak + aka
∗
k

)1/2∥
∥
∥
∥

p

.

Proof. We may assume that A is σ-finite and equipped with a normal faithful

state ψ. Then the tensor product A⊗̄M is equipped with ψ⊗ϕ. Identifying A
with a subalgebra of A⊗̄M by a↔ a⊗1, we see that the associated conditional

expectation satisfies EA(a ⊗ x) = tr(xD1/p′

)a for a ∈ Lp(A) and x ∈ Lp(M).

The independence of (xk) with respect to ϕ implies that of (ak⊗xk) with respect

to EA. Therefore, by Theorem 2.1, we obtain an equivalence of
∥
∥

∑

k ak ⊗ xk

∥
∥

p

with the maximum of three terms. Let us first consider the two terms on the
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conditional square functions:

‖(ak ⊗ xk)‖Lp(A⊗̄M,EA;`c
2)

=

∥
∥
∥
∥

(
∑

k

a∗kak ⊗ tr(x∗kxkD
1− 2

p )D
2
p

)1/2∥
∥
∥
∥

p

=

∥
∥
∥
∥

(
∑

k

tr(x∗kxkD
1− 2

p ) a∗kak

)1/2∥
∥
∥
∥

p

≥ √
κ1

∥
∥
∥
∥

(
∑

k

a∗kak

)1/2∥
∥
∥
∥

p

.

On the other hand, by the Hölder inequality,

tr(x∗xkD
1−2/p) ≤ ‖xk‖2

p ≤ κ2
2 .

Thus it follows that

‖(ak ⊗ xk)‖Lp(A⊗̄M,EA;`c
2)

∼
∥
∥
∥
∥

(
∑

k

a∗kak

)1/2∥
∥
∥
∥

p

.

Passing to adjoints, we get the same estimate for the other conditional square

function. Similarly, we have

‖(ak ⊗ xk)‖`p(Lp) ∼ ‖(ak)‖`p(Lp) .

However, by (2.4)

‖(ak)‖`p(Lp) ≤
∥
∥
∥
∥

(
∑

k

a∗kak

)1/2∥
∥
∥
∥

p

.

Therefore, the assertion follows.

We end this section with a remark on general von Neumann algebras.

Remark 2.6: As stated, our noncommutative Rosenthal inequality holds for σ-

finite von Neumann algebras. It can be easily extended to an arbitrary von

Neumann algebra M provided N and (Ak) are von Neumann subalgebras of

M such that there exist normal faithful conditional expectations EN : M → N
and EAk

: M → Ak satisfying the commutation relation EAk
EN = ENEAk

= EN .

Indeed, let ψ be a strictly normal semifinite faithful weight on N , i.e., a weight

of the form ψ =
∑

i∈I φi, where the φi are normal states on N with mutually

orthogonal supports. Let ei be the support of φi. For a finite subset J ⊂ I,
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set eJ =
∑

i∈J ei. Then (eJ) is an increasing family of projections such that

limJ eJ = 1 strongly. Now we may consider the normal faithful state

ϕJ =
1

|J |
∑

i∈J

φi ◦ EN on eJMeJ .

If (xk) ⊂ Lp(M) is an independent sequence with respect to EN and (Ak) is the

associated independent sequence of subalgebras, we see that the assumptions of

Theorem 2.1 are satisfied for Ak,J = eJAkeJ . Moreover, for x ∈ Lp(M) with

p <∞ we have

x = lim
J
eJx = lim

J
xeJ = lim

J
eJxeJ in Lp(M).

Thus by density, Theorem 2.1 holds in Lp(M). This remark applies to all results

proved in this paper. We will not repeat it and consider only the σ-finite case

for simplicity.

3. Noncommutative Rosenthal inequality: p < 2

We now investigate the noncommutative Rosenthal inequality for 1 < p ≤ 2,

which is the dual version of Theorem 2.1. As for the Burkholder inequality

in [JX1], this dual version did not exist explicitly in literature even in the

commutative (=classical) case. In this section we will assume as before that

N and (Ak) are ϕ-invariant von Neumann subalgebras of M such that (Ak) is

independent with respect to the conditional expectation E = EN .

We start by considering the subspace Rc
p of Lp(M, E ; `c2) consisting of all

sequences (xk) such that xk ∈ Lp(Ak) with E(xk) = 0, 1 ≤ p <∞. Alternately,

Rc
p can be defined as the closure in Lp(M, E ; `c2) of all sequences (akD

1/p) such

that ak ∈ Ak with E(ak) = 0. Similarly, we define the corresponding subspaces

of Lp(M, E ; `r2) and `p(Lp(M)), which are denoted respectively by Rr
p and Rd

p.

Lemma 3.1: Let 1 ≤ p < ∞. Then Rc
p is 2-complemented in Lp(M, E ; `c2).

The similar statements hold for the row and diagonal subspaces Rr
p and Rd

p.

Proof. Let us consider a finite sequence (akD
1/p) with ak ∈ M. By the Cauchy-

Schwarz inequality

E
(
EAk

(ak)∗EAk
(ak)

)
≤ E

(
EAk

(a∗kak)
)

= E(a∗kak).

It follows that

‖(EAk
(ak)D1/p)‖Lp(M,E;`c

2)
≤ ‖(akD

1/p)‖Lp(M,E;`c
2)
.



248 MARIUS JUNGE AND QUANHUA XU Isr. J. Math.

This shows that the map F ((xk)) = (EAk
(xk)) defines a contraction on

Lp(M, E ; `c2). The same argument shows that E((xk)) = (E(xk)) is also a

contraction. Then (id − E)F is the desired projection from Lp(M, E ; `c2) onto

Rc
p. This same projection is also bounded from Lp(M, E ; `r2) onto Rr

p and from

`p(Lp(M)) onto Rd
p.

Theorem 3.2: Let 1 < p ≤ 2. Let xk ∈ Lp(Ak) such that E(xk) = 0. Then

1

2

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ inf
xk=xd

k+xc
k+xr

k

{‖(xd
k)‖Rd

p
+‖(xc

k)‖Rc
p
+‖(xr

k)‖Rr
p
} ≤ c p′

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

.

Proof. Let (xk) ∈ Rd
p. Then by (2.1),

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ 2 ‖(xk)‖Rd
p
.

To consider the second term on column norm, let yk = akD
1/p with E(ak) = 0,

and set y =
∑

k yk. We deduce from [J1, section 2](see also [JX1, section 7])

that

‖y‖2
p = ‖y∗y‖p/2 ≤ ‖E(y∗y)‖p/2 =

∥
∥
∥
∥

∑

k

D1/pE(a∗kak)D1/p

∥
∥
∥
∥

p/2

.

By density this implies that
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ ‖(xk)‖Rc
p

whenever (xk) ∈ Rc
p. Passing to adjoints, we get the same inequality for the

row subspace. Therefore, by triangle inequality we find
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ 2 inf
xk=xd

k+xc
k+xr

k

{
‖(xd

k)‖Rd
p

+ ‖(xc
k)‖Rc

p
+ ‖(xr

k)‖Rr
p

}
.

To prove the converse inequality we use duality. To this end note that the

infimum above is the norm of (xk) in the sum space Rd
p + Rc

p + Rr
p. By the

duality between sums and intersections, we have

(Rd
p′ ∩Rc

p′ ∩Rr
p′ )∗ = (Rd

p′)∗ + (Rc
p′ )∗ + (Rr

p′)∗

isometrically. However, by Lemma 3.1,

(Rd
p′ )∗ = Rd

p , (Rc
p′)∗ = Rc

p , (Rr
p′)∗ = Rr

p

isomorphically. Therefore,

(Rd
p′ ∩Rc

p′ ∩Rr
p′)∗ = Rd

p + Rc
p + Rr

p .
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Now let xk ∈ Lp(Ak) with E(xk) = 0. Let (yk) ∈ Rd
p′ ∩Rc

p′ ∩Rr
p′ such that

max
{
‖(yk)‖Rd

p′
, ‖(yk)‖Rc

p′
, ‖(yk)‖Rr

p′

}
≤ 1 .

Then by Theorem 2.1, ∥
∥
∥
∥

∑

k

yk

∥
∥
∥
∥

p′

≤ c p′ .

Thus, by orthogonality and the Hölder inequality
∣
∣
∣
∣

∑

k

tr(y∗kxk)

∣
∣
∣
∣

=

∣
∣
∣
∣
tr

[(
∑

k

yk

)∗( ∑

k

xk

)]∣
∣
∣
∣
≤ c p′

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

.

We then deduce the desired inequality. Hence the theorem is proved.

Now we give an application to random matrices. Recall that the eij denote

the canonical matrix units of B(`2).

Theorem 3.3: Let 1 < p < ∞ and (xij) be a finite matrix with entries in

Lp(M). Assume that the xij are independent with respect to E and E(xij) = 0.

Then for p ≥ 2
∥
∥
∥
∥

∑

ij

xij ⊗ eij

∥
∥
∥
∥

Lp(M⊗̄B(`2))

∼cp

max

{(
∑

ij

‖xij‖p
p

)1/p

,

(
∑

j

∥
∥
∥
∥

[
∑

i

E(|xij |2)

]1/2∥
∥
∥
∥

p

p

)1/p

,

(
∑

i

∥
∥
∥
∥

[
∑

j

E(|xij
∗|2)

]1/2∥
∥
∥
∥

p

p

)1/p}

and for p < 2
∥
∥
∥
∥

∑

ij

xij ⊗ eij

∥
∥
∥
∥

Lp(M⊗̄B(`2))

∼cp′ inf

{(
∑

ij

‖xd
ij‖p

p

)1/p

+

(
∑

j

∥
∥
∥
∥

[
∑

i

E(|xc
ij |2)

]1/2∥
∥
∥
∥

p

p

)1/p

+

(
∑

i

∥
∥
∥
∥

[
∑

j

E(|xr
ij

∗|2)

]1/2∥
∥
∥
∥

p

p

)1/p}

,

where the infimum is taken over all decompositions xij = xd
ij + xc

ij + xr
ij with

mean zero elements xd
ij , x

c
ij and xr

ij , which, for each couple (i, j), belong to the

von Neumann subalgebra generated by xij .
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Proof. Assume that (xij) is an n × n matrix. Let Tr be the usual trace on

B(`n2 ). Then ϕ⊗Tr is a normal faithful positive functional on M⊗̄B(`n2 ) (which

becomes a state if we wish by normalizing Tr). The conditional expectation from

M⊗̄B(`n2 ) onto N⊗̄B(`n2 ) is E ⊗ idB(`n
2 ). It is easy to see that (xij ⊗ eij) is

independent with respect to E ⊗ idB(`n
2 ). Then the case p ≥ 2 follows directly

from Theorem 2.1. Indeed, we have
∥
∥
∥
∥

∑

ij

E ⊗ idB(`n
2 )(|xij ⊗ eij |2)

∥
∥
∥
∥

p/2

=

∥
∥
∥
∥

∑

ij

E(|xij |2) ⊗ ejj

∥
∥
∥
∥

p/2

=

(
∑

j

∥
∥
∥
∥

∑

i

E(|xij |2)

∥
∥
∥
∥

p/2

p/2

)2/p

.

The same calculation applies to the second square function.

For the case p < 2 we cannot formally apply Theorem 3.2. However, we

can indeed follow the reduction argument of Theorem 3.2 from Theorem 2.1.

For this, let (Aij) be a family of subalgebras independent over N such that

xij ∈ Lp(Aij). Accordingly, we define R̃c
p to be the subspace of `p(Lp(M, E ; `c2))

consisting of (yij) such that yij ∈ Lp(Aij) and E(yij) = 0. (Note that `p and `c2
in `p(Lp(M, E ; `c2)) are in j and i, respectively; this corresponds to the second

term in the preceding maximum.) Then the proof of Lemma 3.1 shows that R̃c
p

is complemented in `p(Lp(M, E ; `c2)). Similarly, we introduce the complemented

diagonal and row subspaces R̃d
p and R̃r

p of `p(N2;Lp(M)) and `p(Lp(M, E ; `r2)),

respectively. The rest of the proof is the same as that of Theorem 3.2.

Remark 3.4: Applying Theorem 3.3 to a Rademacher family (εij) on a proba-

bility space (Ω, µ), we get the following well-known equivalence for 2 ≤ p <∞
∥
∥
∥
∥

∑

ij

εij aij eij

∥
∥
∥
∥

Lp(Ω;Sp)

∼

max

{(
∑

j

(
∑

i

|aij |2
)p/2)1/p

,

(
∑

i

(
∑

j

|aij |2
)p/2)1/p}

for all finite complex matrices (aij). Indeed, in this special case the diagonal

term
( ∑

ij |aij |p
)1/p

in the maximum is dominated by each of the two others

(see (2.4)). By duality, we get a similar equivalence for 1 < p < 2 by replacing,

as usual, the maximum by the corresponding infimum (see [LP]). Note that

(εij) can be replaced by a standard Gaussian family.
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Applying the Rosenthal inequality to the independent sequences contained in

the examples of Section 1, we get Khintchine type inequalities as in Corollaries

2.4 and 2.5. Due to their importance in applications, we give further details.

For convenience, we group them together into two remarks according to the

tracial and non-tracial cases.

Remark 3.5: Let ϕ be a normal faithful tracial state on M, and let (xk) be a

sequence in Lp(M) such that

αp = inf
k
‖xk‖p > 0 and βp = sup

k
‖xk‖p <∞

for all p < ∞. Assume that the xk are independent with respect to ϕ and

ϕ(xk) = 0. Let A be another von Neumann algebra and (ak) ⊂ Lp(A) a finite

sequence. Then for 2 ≤ p <∞
∥
∥
∥
∥

∑

k

ak ⊗ xk

∥
∥
∥
∥

Lp(A⊗̄M)

∼ max
{
‖(ak)‖Lp(A;`c

2)
, ‖(ak)‖Lp(A;`r

2)

}

and for 1 < p < 2

∥
∥
∥
∥

∑

k

ak ⊗ xk

∥
∥
∥
∥

Lp(A⊗̄M)

∼ inf
{
‖(bk)‖Lp(A;`c

2)
+ ‖(ck)‖Lp(A;`r

2)

}
,

where the infimum is taken over all decompositions ak = bk + ck in Lp(A). In

both cases, the equivalence constants depend only on p, αp and βp.

The first equivalence is a special case of Corollary 2.5. The second then fol-

lows by duality. This statement implies many known inequalities. For instance,

if (xk) is a Rademacher, Steinhauss or Gaussian sequence, we recover the non-

commutative Khintchine inequalities of Lust-Piquard/Pisier [LPP]. As far as

for noncommutative independence, (xk) can be a sequence of free Gaussians,

q-Gaussians or free generators. Then we get the corresponding inequalities al-

ready in [P1] (except the q-case). It is worth noting that for all these concrete

examples, the second equivalence above holds for p = 1 also and the constant

there is then controlled by a universal one; moreover, in the noncommutative

case (except q 6= −1) the first equivalence is true even for p = ∞ and the con-

stant is also universal (depending only on q in the q-case). We refer to [P1] for

more information.
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Remark 3.6: Here we consider only the quasi free CAR generators (xk) defined

in (1.2). Then for 2 ≤ p <∞
∥
∥
∥
∥

∑

k

ak ⊗D1/(2p)xkD
1/(2p)

∥
∥
∥
∥

p

∼

max

{∥
∥
∥
∥

(
∑

k

(1 − µk)1/pµ
1/p′

k a∗kak

)1/2∥
∥
∥
∥

p

,

∥
∥
∥
∥

(
∑

k

(1 − µk)1/p′

µ
1/p
k aka

∗
k

)1/2∥
∥
∥
∥

p

}

and for 1 < p < 2
∥
∥
∥
∥

∑

k

ak ⊗D1/(2p)xkD
1/(2p)

∥
∥
∥
∥

p

∼

inf

{∥
∥
∥
∥

( ∑

k

(1 − µk)1/pµ
1/p′

k b∗kbk
)1/2

∥
∥
∥
∥

p

+

∥
∥
∥
∥

(
∑

k

(1 − µk)1/p′

µ
1/p
k ckc

∗
k

)1/2∥
∥
∥
∥

p

}

,

where the infimum is taken over all decompositions ak = bk + ck in Lp(A).

Moreover, the equivalence constants depend only on p.

This statement is a reformulation of [X3, Theorem 4.1]. Note that the case

p ≥ 2 can be easily deduced from Corollary 2.5 and the other is again proved

by duality. It is shown in [J3] that the second equivalence remains true for

p = 1. Let us point out that a similar statement holds for the generalized

circular system in (1.1). In this case, all constants are universal (see [X2]; see

also [JPX] for the q-case). We should emphasize that all these Khintchine type

inequalities have interesting applications. In fact, they play a crucial role in the

recent works on the operator space Grothendieck theorems and the complete

embedding of Pisier’s OH into noncommutative Lp, see [J2, PS, X3, X2].

4. A variant using maximal functions

We discuss in this section a version of the noncommutative Rosenthal inequality

where the diagonal norm of `p(Lp(M)) is replaced by that of Lp(M; `∞). This

is in perfect analogy with the classical Burkholder inequality for commutative

martingales. Our argument is based on interpolation and the resulting constant

presents, unfortunately, a singularity as p → 2. We need some facts on non-

commutative Lp(Lq). For our purpose here we will need only the case where

the second space Lq is `q. The investigation of general noncommutative Lp(Lq)

spaces will be pursued elsewhere.



Vol. 167, 2008 BURKHOLDER/ROSENTHAL INEQUALITIES 253

Let us recall the definition of the spaces Lp(M; `∞) and Lp(M; `1), 1 ≤ p ≤
∞. A sequence (xk) in Lp(M) belongs to Lp(M; `∞) if and only if (xk) admits

a factorization xk = aykb with a, b ∈ L2p(M) and (yk) ∈ `∞(L∞(M)). The

norm of (xk) is then defined as

(4.1) ‖(xk)‖Lp(M;`∞) = inf
xk=aykb

‖a‖2p ‖(yk)‖`∞(L∞) ‖b‖2p .

On the other hand, Lp(M; `1) is defined as the space of all sequences (xk) ⊂
Lp(M) for which there exist akj , bkj ∈ L2p(M) such that

xk =
∑

j

a∗kjbkj .

Lp(M; `1) is equipped with the norm

‖(xk)‖Lp(M;`1) = inf
xk=

∑

j a∗
kjbkj

∥
∥
∥
∥

∑

k,j

a∗kjakj

∥
∥
∥
∥

1/2

p

∥
∥
∥
∥

∑

k,j

b∗kjbkj

∥
∥
∥
∥

1/2

p

.

This norm has a description similar to that of Lp(M; `∞):

(4.2) ‖x‖Lp(M;`1) = inf
xk=aykb

‖a‖2p ‖(yk)‖L∞(M;`1) ‖b‖2p .

We refer to [J1] for more information (see also [JX3]). Now for 1 < q < ∞
we define Lp(M; `q) as a complex interpolation space between Lp(M; `∞) and

Lp(M; `1):

Lp(M; `q) = [Lp(M; `∞), Lp(M; `1)]1/q .

Our reference for interpolation theory is [BL]. The norm of Lp(M; `q) will be

often denoted by ‖ ‖Lp(`q). Let us note that if M is injective, this definition is

a special case of Pisier’s vector-valued noncommutative Lp-space theory [P1].

The following is also motivated by Pisier’s theory.

Proposition 4.1: Let (xk) ⊂ Lp(M). Then (xk) ∈ Lp(M; `q) if and only

if (xk) admits a factorization xk = aykb with a, b ∈ L2p(M) and (yk) ∈
L∞(M; `q). Moreover,

‖(xk)‖Lp(`q) = inf
xk=aykb

‖a‖2p ‖(yk)‖L∞(`q) ‖b‖2p .

Proof. Let ||| (xk) |||p,q denote the infimum above. By (4.1) and (4.2), the trilin-

ear map (a, (yk), b) 7→ (aykb) is contractive from L2p(M)×L∞(M; `q)×L2p(M)

to Lp(M; `q) for q = ∞ and q = 1, so is it for any q ∈ (1,∞) in virtue of inter-

polation. This yields

‖(xk)‖Lp(`q) ≤ |||(xk) |||p,q .
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To prove the converse we consider only the case where the state ϕ is tracial. The

general case can be reduced to this one by using Haagerup’s reduction theorem

as in [X1]. Now assume ‖x‖Lp(`q) < 1. Let S = {z ∈ C : 0 ≤ Rez ≤ 1}. Then

there exists a sequence (fk) of continuous functions from S to Lp(M), analytic

in the interior of S, such that fk(1/q) = xk and

sup
t∈R

‖(fk(it))‖Lp(`∞) ≤ 1, sup
t∈R

‖(fk(1 + it))‖Lp(`1) ≤ 1.

By (4.1) and (4.2), we have factorizations

fk(z) = a(z)yk(z)b(z), z ∈ ∂S

such that

‖a(z)‖2p ≤ 1, ‖b(z)‖2p ≤ 1

and

‖(yk(it))‖L∞(`∞) ≤ 1, ‖(yk(1 + it))‖L∞(`1) ≤ 1.

Moreover, we may assume that a, b and y are strongly measurable on ∂S. Now

fix ε > 0. Then by the operator-valued Szegö factorization [PX2, Corollary 8.2],

we find two strongly measurable functions α, β : S → L2p(M), analytic in the

interior, such that

α(z)α(z)∗ = a(z)a(z)∗ + ε and β(z)∗β(z) = b(z)∗b(z) + ε , z ∈ ∂S .

Moreover, α(z) and β(z) are invertible for every z ∈ S. For z ∈ ∂S let u(z) and

v(z) be contractions in M such that

a(z) = α(z)u(z) and b(z) = v(z)β(z) .

We then deduce

fk(z) = α(z)u(z)yk(z)v(z)β(z) .

Set ỹk(z) = u(z)yk(z)v(z) for z ∈ ∂S. Since α(z) and β(z) are invertible, we

have ỹk(z) = α(z)−1fk(z)β(z)−1. Thus ỹk is the boundary value of an analytic

function in S, so ỹk itself may be viewed as an analytic function in S. Therefore,

we obtained an analytic factorization of fk:

fk(z) = α(z)ỹk(z)β(z), z ∈ S.

Moreover, we have the following estimates

‖α(z)‖2p ≤ 1 + ε , ‖β(z)‖2p ≤ 1 + ε
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for any z ∈ ∂S and

‖(ỹk(it))‖L∞(`∞) ≤ 1, ‖(ỹk(1 + it))‖L∞(`1) ≤ 1.

It then follows that

‖α(1/q)‖2p ≤ 1 + ε , ‖β(1/q)‖2p ≤ 1 + ε ‖(ỹk(1/q))‖L∞(`q) ≤ 1.

Since xk = fk(1/q) = α(1/q)ỹk(1/q)β(1/q), we deduce

‖(xk)‖Lp(`q) ≤ 1 + ε .

Letting ε→ 0 yields ‖(xk)‖Lp(`q) ≤ 1.

Corollary 4.2: Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and 0 < θ < 1. Then

[Lp0(M; `q0), Lp1(M; `q1)]θ = Lp(M; `q)

with equal norms, where 1/p = (1 − θ)/p0 + θ/p1 and 1/q = (1 − θ)/q0 + θ/q1.

Proof. By Proposition 4.1, the trilinear map (a, (yk), b) 7→ (aykb) is contractive

from L2pj (M)×L∞(M; `qj )×L2pj (M) to Lpj (M; `qj ) for j = 0 and j = 1, so

by interpolation it is also contractive from L2p(M) × L∞(M; `q) × L2p(M) to

[Lp0(M; `q0), Lp1(M; `q1)]θ. This, together with Proposition 4.1, implies

Lp(M; `q) ⊂ [Lp0(M; `q0), Lp1(M; `q1)]θ .

The converse inclusion is proved similarly as Proposition 4.1 by using the Szegö

factorization. We omit the details.

Corollary 4.3: Let 1 ≤ p, q ≤ ∞.

(i) Lp(M; `p) = `p(Lp(M)) isometrically.

(ii) If p ≤ q,

‖(xk)‖Lp(`q) = inf
xk=aykb

‖a‖2r ‖(yk)‖`q(Lq) ‖b‖2r

for any (xk) ∈ Lp(M; `q), where 1/r = 1/p− 1/q.

(iii) If p ≥ q,

‖(xk)‖Lp(`q) = sup
‖α‖2s≤1, ‖β‖2s≤1

‖(αxkβ)‖`q(Lq)

for any (xk) ∈ Lp(M; `q), where 1/s = 1/q − 1/p.
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Proof. (i) By definition the quality in question is true for p = ∞ and p = 1.

For 1 < p <∞ we use the previous corollary to conclude

Lp(M; `p) = [L∞(M; `∞), L1(M; `1)]1/p

= [`∞(L∞(M)), `1(L1(M))]1/p = `p(Lp(M)) .

(ii) Proposition 4.1 may be rewritten symbolically as

Lp(M; `q) = L2p(M)L∞(M; `q)L2p(M) .

However, the Hölder inequality implies

L2p(M) = L2r(M)L2q(M) = L2q(M)L2r(M) .

We thus deduce, by (i)

Lp(M; `q) = L2r(M)L2q(M)L∞(M; `q)L2q(M)L2r(M)

= L2r(M)Lq(M; `q)L2r(M) = L2r(M) `q(Lq(M))L2r(M) ;

whence the desired result.

(iii) Given (xk) ∈ Lp(M; `q) we apply Proposition 4.1 to write xk = aykb

with a, b ∈ L2p(M) and (yk) ∈ L∞(M; `q). Then for any α, β in the unit ball

of L2s(M), we have

‖(αxkβ)‖`q(Lq) ≤ ‖αa‖2q ‖(yk)‖L∞(`q) ‖bβ‖2q ≤ ‖a‖2p ‖(yk)‖L∞(`q) ‖b‖2p .

Therefore,

sup
‖α‖2s≤1, ‖β‖2s≤1

‖(αxkβ)‖`q(Lq) ≤ ‖(xk)‖Lp(`q) .

To prove the converse inequality, we use (ii) and duality. It suffices to consider

a finite sequence (xk)1≤k≤n ⊂ Lp(M). Accordingly, we consider the `nq -valued

Lp-space Lp(M; `nq ). We may also assume p > q. Then

Lp′(M; `n1 )∗ = Lp(M; `n∞) and Lp′(M; `n∞)∗ = Lp(M; `n1 )

isometrically (see [J2] and [JX3]). Using the duality theorem on complex inter-

polation, we deduce

Lp′(M; `nq′)∗ = Lp(M; `nq ).

Now let (yk) ∈ Lp′(M; `nq′) be of norm less than 1. By (ii) we can write yk = azkb

with

‖a‖2s ≤ 1, ‖b‖2s ≤ 1, ‖(zk)‖`q′ (Lq′ )
≤ 1.
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Then
∣
∣
∣
∣

∑

k

tr(y∗kxk)

∣
∣
∣
∣

=

∣
∣
∣
∣

∑

k

tr(z∗ka
∗xkb

∗)

∣
∣
∣
∣
≤

∥
∥(a∗xkb

∗)
∥
∥

`q(Lq)
;

whence the desired converse inequality.

Corollary 4.4: Let 2 ≤ p ≤ ∞. Then

[Lp(M; `c2), Lp(M; `r2)]1/2 ⊂ Lp(M; `2) .

Proof. Let 1/r = 1/2 − 1/p. We consider the map T : (a, (xk), b) 7→ (axkb).

First, we note that

T : L∞(M) × Lp(M; `c2) × Lr(M) → `2(L2(M))

is a contraction because

∑

k

‖axkb‖2
2 ≤ ‖a‖2

∞
∑

k

tr(b∗x∗kxkb) = ‖a‖2
∞ tr

((
∑

k

x∗kxk

)

bb∗
)

≤ ‖a‖2
∞

∥
∥
∥
∥

∑

k

x∗kxkbigg‖p/2‖bb∗‖r/2

= ‖a‖2
∞ ‖(xk)‖2

Lp(M;`c
2)
‖b‖2

r .

Similarly, we see that

T : Lr(M) × Lp(M; `r2) × L∞(M) → `2(L2(M))

is a contraction. Thus by interpolation

T : L2r(M) × [Lp(M; `c2), Lp(M; `r2)]1/2 × L2r(M) → `2(L2(M))

is a contraction. Then Corollary 4.3, (iii) implies the assertion.

Remark 4.5: The inclusion converse to that of Corollary 4.4 holds too, so we

have equality. This is a special case of the main result from [X1] (see also [JP]

for more general results of this type).

Now we are ready to prove the version of the noncommutative Rosenthal

inequality in terms of maximal functions.

Theorem 4.6: Let N be a ϕ-invariant von Neumann subalgebra of M with

conditional expectation E . Let 2 < p < ∞ and (xk) ⊂ Lp(M) be a sequence
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independent with respect to E such that E(xk) = 0. Then
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ cp max
{
‖(xk)‖Lp(`∞) , ‖(xk)‖Lp(M,E;`c

2)
, ‖(xk)‖Lp(M,E;`r

2)

}
.

Proof. If

‖(xk)‖`p(Lp) < max
{
‖(xk)‖Lp(M,E;`c

2)
, ‖(xk)‖Lp(M,E;`r

2)

}
,

then Theorem 2.1 implies
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ c pmax
{
‖(xk)‖Lp(M,E;`c

2)
, ‖(xk)‖Lp(M,E;`r

2)

}
,

so we are done. It remains to consider the case where

max
{
‖(xk)‖Lp(M,E;`c

2)
, ‖(xk)‖Lp(M,E;`r

2)

}
≤ ‖(xk)‖`p(Lp) .

Again by Theorem 2.1, we have
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ c p‖(xk)‖`p(Lp) .

By the reiteration theorem, we deduce (with θ = 2/p)

Lp(M; `p) = [Lp(M; `∞), Lp(M; `2)]θ .

This, together with Corollary 4.3 (i), implies
∥
∥(xk)

∥
∥

`p(Lp)
≤

∥
∥(xk)

∥
∥

1−θ

Lp(`∞)

∥
∥(xk)

∥
∥

θ

Lp(`2)
.

Using Lemma 1.2 and (2.3), we have

(4.3) max{‖(xk)‖Lp(M;`c
2)
, ‖(xk)‖Lp(M;`r

2)} ≤ 2

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

.

Then by Corollary 4.4

‖(xk)‖Lp(`2) ≤ 2

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

.

Combining these estimates we find (after cancellation) that
∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

≤ (c 2θp)1/(1−θ) ‖(xk)‖Lp(`∞) .

The theorem is thus proved with cp ≤ (c′p)p/(p−2) for p > 2. In particular,

cp ≤ c′′p for p ≥ 4.
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We take this opportunity to present the same improvement in the context

of the noncommutative Burkholder inequality of [JX1]. Namely, we want to

replace the norm ‖(dx)‖`p(Lp) in the following inequality by ‖(dx)‖Lp(`∞):

‖x‖p ≤ cp max
{
‖(dx)‖`p(Lp) , ‖x‖hc

p
, ‖x‖hr

p

}

for any noncommutative martingale x = (xk) with respect to an increasing

filtration (Ek) of normal faithful conditional expectations. Here dx = (dxk)

denotes the difference sequence of x and

‖x‖hc
p

=

∥
∥
∥
∥

(
∑

k

Ek−1(|dxk|2)

)1/2∥
∥
∥
∥

p

, ‖x‖hr
p

= ‖x∗‖hc
p
.

We refer to [JX1] for more details. Note that cp ≤ c p according to [R3], which

improves the original estimate cp ≤ c p2 from [JX1].

Theorem 4.7: Let 2 < p < ∞. Then for any noncommutative bounded Lp-

martingale x we have

‖x‖p ≤ c′p max
{
‖(dx)‖Lp(`∞) , ‖x‖hc

p
, ‖x‖hr

p

}
.

Proof. This proof is almost the same as that of the previous theorem. The only

difference is that the martingale analogue of (4.3) is now obtained by using the

lower estimate in the noncommutative Burkholder-Gundy inequality (see [JX2]

for the optimal order of the constant):

max{‖(dx)‖Lp(M;`c
2)
, ‖(dx)‖Lp(M;`r

2)} ≤ c p ‖x‖p .

We omit the details. The resulting order of the constant c′p is the same as that

of cp in the previous theorem.

Remark 4.8: We can also improve the lower estimates in the noncommutative

Burkholder/Rosenthal inequalities for 1 < p < 2, by replacing the diagonal

term `p(Lp) by Lp(`1). For instance, under the assumptions of Theorem 3.2 we

have

inf
xk=xd

k+xc
k+xr

k

{
‖(xd

k)‖R̃d
p

+ ‖(xc
k)‖Rc

p
+ ‖(xr

k)‖Rr
p

}
≤ cp

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

,

where R̃d
p is the subspace of Lp(M; `1) consisting of all (xk) such that xk ∈

Lp(Ak) with E(xk) = 0. The proof is similar to that of Theorem 3.2 via duality.

The complementation of the space R̃d
p follows from the noncommutative Doob

inequality in [J1].
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5. The nonfaithful case

Nonfaithful filtrations of von Neumann subalgebras, therefore nonfaithful con-

ditional expectations, occur very naturally in operator algebra theory. The

simplest example is the natural filtration (Mn)n≥1 of B(`2) given by the alge-

bras Mn of matrices (aij) such that aij = 0 if max(i, j) > n. On the other hand,

the notion of nonfaithful copies in a tensor product of von Neumann algebras

is important in the context of iterated ultraproducts of von Neumann algebras.

The aim of this section is to extend Theorem 2.1 to the case of nonfaithful

conditional expectations. We start with the relevant notion. M is still assumed

to be σ-finite and equipped with a normal faithful state ϕ. Let N be a w*-closed

involutive (not necessarily unital) subalgebra of M. Let e be the unit of N , so

e is a projection of M. Again, assume that N is ϕ-invariant (i.e., σϕ
t (N ) ⊂ N

for all t ∈ R). With these assumptions we still have a normal conditional

expectation EN : M → N with support equal to e such that ϕ◦EN = ϕe, where

ϕe = eϕe. Like in the faithful case, EN extends to a contractive projection from

Lp(M) onto Lp(N ) for every p ≥ 1. We refer to [JX1] for more details.

Now, we consider a sequence (Ak) of ϕ-invariant w*-closed involutive subal-

gebras of M containing N . Let us denote by rk the unit of Ak. We will say

that the algebras Ak are independent over N or with respect to EN if

(i) the projections sk = rk − e are mutually orthogonal;

(ii) for every k, EN (xy) = EN (x)EN (y) holds for all x ∈ Ak and y in the

w*-closed involutive subalgebra generated by (Aj)j 6=k.

Note that in this case (eAke) is faithfully independent over N in the sense of

Section 1. A sequence (xk) ⊂ Lp(M) is called independent with respect to

EN if there exists a sequence (Ak) of subalgebras independent with respect to

EN such that xk ∈ Lp(Ak).

The new ingredient for the nonfaithful version of the noncommutative Rosen-

thal inequality is a separate treatment of the corners. In the rest of this section

we will assume that (Ak) is independent with respect to E = EN and keep the

preceding notations.

Lemma 5.1: Let 2 ≤ p <∞ and xk ∈ Lp(Ak). Then

∥
∥
∥
∥

∑

k

skxke

∥
∥
∥
∥

p

≤ c
√
p max

{
‖(skxke)‖`p(Lp), ‖(skxk)‖Lp(M,E;`c

2)

}
.
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Proof. Let x =
∑

k skxke. By the orthogonality of the sk, we obtain

‖x‖2
p =

∥
∥
∥
∥

∑

k

ex∗kskxke

∥
∥
∥
∥

p/2

≤
∥
∥
∥
∥

∑

k

E(x∗kskxk)

∥
∥
∥
∥

p/2

+

∥
∥
∥
∥

∑

k

ex∗kskxke− E(x∗kskxk)

∥
∥
∥
∥

p/2

.

Note that yk = ex∗kskxke − E(x∗kskxk) ∈ eAke and satisfies E(yk) = 0. As

observed before, the sequence (eAke) is faithfully independent over N . Now,

we follow the proof of Theorem 2.1. If 2 ≤ p ≤ 4, we deduce from (2.1) that

∥
∥
∥
∥

∑

k

yk

∥
∥
∥
∥

p/2

≤ 2E

∥
∥
∥
∥

∑

k

εkyk

∥
∥
∥
∥

p/2

≤ 2

(
∑

k

‖yk‖p/2
p/2

)2/p

≤ 4

(
∑

k

‖skxke‖p
p

)2/p

.

For 4 < p < ∞, we deduce from Theorem 2.1 applied to (yk) ⊂ Lq(eMe) with

q = p/2 and Lemma [JX1, Lemma 5.2] that

∥
∥
∥
∥

∑

k

yk

∥
∥
∥
∥

q

≤ cpmax

{
∥
∥(yk)

∥
∥

`q(Lq)
,

∥
∥
∥
∥

(
∑

k

E(y∗kyk)

)1/2∥
∥
∥
∥

q

}

≤ cpmax

{
∥
∥(skxke)

∥
∥

2

`p(Lp)
,

∥
∥
∥
∥

∑

k

E(|skxke|4)

∥
∥
∥
∥

1/2

p/4

}

≤ cpmax

{
∥
∥(skxke)

∥
∥

2

`p(Lp)
,

(
∑

k

‖skxke‖p
p

)1/(p−2)

∥
∥
∥
∥

∑

k

E(|skxke|2)

∥
∥
∥
∥

(p/2−2)/(p−2)

p/2

}

.

Then the assertion follows by homogeneity.

The nonfaithful version of the Rosenthal inequality for p ≥ 2 has the same

form as Theorem 2.1.

Theorem 5.2: Let 2 ≤ p <∞ and xk ∈ Lp(Ak). Set yk = xk − E(xk). Then

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

∼cp

max

{∥
∥
∥
∥

∑

k

E(xk)

∥
∥
∥
∥

p

, ‖(yk)‖`p(Lp), ‖(yk)‖Lp(M,E;`c
2)
, ‖(yk)‖Lp(M,E;`r

2)

}

.
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Proof. Since ∥
∥
∥
∥

∑

k

xk‖p ≤
∥
∥
∥
∥

∑

k

E(xk)

∥
∥
∥
∥

p

+

∥
∥
∥
∥

∑

k

yk

∥
∥
∥
∥

p

,

we need only to estimate the second term on the right. Since yk is supported

by rk and sk = rk − e for each k, we have
∥
∥
∥
∥

∑

k

yk

∥
∥
∥
∥

p

≤
∥
∥
∥
∥

∑

k

skyksk

∥
∥
∥
∥

p

+

∥
∥
∥
∥

∑

k

skyke

∥
∥
∥
∥

p

+

∥
∥
∥
∥

∑

k

eyksk

∥
∥
∥
∥

p

+

∥
∥
∥
∥

∑

k

eyke

∥
∥
∥
∥

p

.

By the mutual orthogonality of the sk,
∥
∥
∥
∥

∑

k

skyksk

∥
∥
∥
∥

p

=

(
∑

k

‖skyksk‖p
p

)1/p

≤ ‖(yk)‖`p(Lp) .

On the other hand, by Lemma 5.1,
∥
∥
∥
∥

∑

k

skyke

∥
∥
∥
∥

p

≤ c
√
p max

{
‖(skyke)‖`p(Lp), ‖(skyk)‖Lp(M,E;`c

2)

}

≤ c
√
p max

{
‖(yk)‖`p(Lp), ‖(yk)‖Lp(M,E;`c

2)

}
.

Passing to adjoints, we get the same estimate for another term on the corners.

To deal with the last term, we recall that the algebras eAke are faithfully

independent over N . Thus Theorem (2.1) applies to (eyke):
∥
∥
∥
∥

∑

k

eyke

∥
∥
∥
∥

p

≤ cpmax
{
‖(eyke)‖`p(Lp), ‖(eyke)‖Lp(M,E;`c

2)
, ‖(eyke)‖Lp(M,E;`r

2)

}

≤ cpmax
{
‖(yk)‖`p(Lp), ‖(yk)‖Lp(M,E;`c

2)
, ‖(yk)‖Lp(M,E;`r

2)

}
.

Combining the preceding inequalities, we obtain the upper estimate. The lower

estimate is proved in the same way as in the faithful case.

Example 5.3: Nonfaithful independence occurs naturally in the context of con-

ditional expectations with respect to corners. Let M be a von Neumann algebra,

e a projection and (rk) a family of projections such that e ≤ rj and such that

the sk are mutually orthogonal, where sk = rk − e. Consider

N = eMe and Ak = rkMrk .

The conditional expectation associated with N is given by E(x) = exe. Then

the Ak are independent over N . This situation occurs for example on a tensor

product M = B⊗n , where e = f1 ⊗ · · · ⊗ fn and rk = f1 ⊗ · · · fk−1 ⊗ 1⊗ fk+1 ⊗
· · · ⊗ fn with fk projections in B.
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Remark 5.4: There exists, of course, a nonfaithful version of the Rosenthal

inequality for 1 < p ≤ 2. We keep the same assumptions as before. The main

technical difference is that we have to introduce two extra spaces

Rp(se) =

{
∑

k

skxke : xk ∈ Lp(Ak), E(xk) = 0

}

and

Rp(es) =

{
∑

k

exksk : xk ∈ Lp(Ak), E(xk) = 0

}

.

It is easy to show that they are complemented in
{

∑

k

xk : xk ∈ Lp(Ak), E(xk) = 0

}

.

Thanks to Lemma 5.1, we are able to describe the dual Rp′(se) of Rp(se) as an

intersection of two terms, an `p′-term and a column square function. Using the

duality argument from the proof of Theorem 3.2, we deduce
∥
∥
∥
∥

∑

k

skxke

∥
∥
∥
∥

p

∼c
√

p′ inf
skxke=skxd

ke+skxc
ke

∥
∥(skx

d
ke)

∥
∥

`p(Lp)
+

∥
∥(skx

c
k)

∥
∥

Lp(M,E;`c
2)
.

A similar result holds for Rp(es). Now let xk ∈ Lp(Ak) with E(xk) = 0. Then

∥
∥
∥
∥

∑

k

xk

∥
∥
∥
∥

p

∼c

max

{
∥
∥(skxksk)

∥
∥

`p(Lp)
,

∥
∥
∥
∥

∑

k

skxke

∥
∥
∥
∥

p

,

∥
∥
∥
∥

∑

k

exksk

∥
∥
∥
∥

p

,

∥
∥
∥
∥

∑

k

exke

∥
∥
∥
∥

p

}

.

The second and third terms were already treated. However, the last term is the

faithful part, so can be dealt with according to Theorem 3.2, which yields an

equivalence with an infimum. This complicated expression involving maximum

and infimum is particularly interesting in connection with independent copies

(as in [J3]). In this case, the expressions are symmetric. This formula can be

used to prove that subsymmetric sequences in Lp(M), 1 < p ≤ 2, are symmetric

(see [JR] for more details).

6. Symmetric subspaces of noncommutative Lp

In this section, we present some applications of the Burkholder/Rosenthal in-

equalities to the study of symmetric subspaces of noncommutative Lp-spaces
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both in the category of Banach spaces and in that of operator spaces. The

results obtained are the noncommutative or operator space analogues of the

corresponding results in [JMST]. Thus we will follow arguments in [JMST] in

many cases. It will be convenient to state these results in parallel for both cate-

gories, which will also ease comparing and understanding them. All unexplained

Banach space terminologies used in the sequel can be found in [LT]. We refer to

[ER, P2] for background on operator spaces and completely bounded maps and

to [P1, JNRX] for the operator space structure of noncommutative Lp-spaces.

In this paper we will focus on subspaces of these spaces. In this situation we

will only need the following fact from [P1]: If X and Y are subspaces of Lp(M),

1 ≤ p ≤ ∞, then the cb-norm of a linear map T : X → Y is given by

‖T ‖cb = ‖idSp ⊗ T : Sp(X) → Sp(Y )‖ .

Here Sp(X) denotes the closure of Sp ⊗ X in Lp(B(`2)⊗̄M). In other words,

the cb-norm is calculated with matrix-valued coefficients instead of scalar-valued

coefficients for the usual norm ‖T ‖. It is then straightforward to transfer to this

setting all Banach space terminologies concerning bases, basic sequences, etc.

For instance, a basic sequence (xk) ⊂ X is said to be completely unconditional

if there exists a constant λ such that
∥
∥
∥
∥

∑

k

εkak ⊗ xk

∥
∥
∥
∥
≤ λ

∥
∥
∥
∥

∑

k

ak ⊗ xk

∥
∥
∥
∥

for all ak ∈ Sp and εk = ±1. Similarly, a FDD (finite dimensional decomposi-

tion) (Fk) of X is said to be completely unconditional if there exists a constant

λ such that
∥
∥
∥
∥

∑

k

εkak ⊗ xk

∥
∥
∥
∥
≤ λ

∥
∥
∥
∥

∑

k

ak ⊗ xk

∥
∥
∥
∥

for all xk ∈ Fk, ak ∈ Sp and εk = ±1.

The von Neumann algebras considered in this section and the next one may

be non σ-finite. However, since we will often consider sequences or separable

subspaces in Lp(M), it is easy to bring M to a σ-finite subalgebra (see also

Remark 2.6).

Lemma 6.1: Let M be a hyperfinite type IIIλ factor with 0 ≤ λ ≤ 1 and with

separable predual. Let 1 < p <∞. Then Lp(M) has a completely unconditional

FDD.
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Proof. In the range 0 < λ ≤ 1, we may assume that M is an ITPFI factor.

In general (including λ = 0), we can always find a normal faithful state ϕ and

an increasing sequence of finite dimensional ϕ-invariant subalgebras Mn with

conditional expectations En : M → Mn (see [JRX]). This yields a martingale

structure on M. We define the difference operators Dn = En − En−1 where

E0 = 0. Note that the spaces Fn = Dn(Lp(M)) are finite dimensional and

every element can be written uniquely as x =
∑

n Dn(x). Thus Lp(M) has

a FDD. The complete unconditionality of this decomposition means that all

maps Tε =
∑

n εnDn are completely bounded uniformly in εn = ±1. Namely,

the maps idSp ⊗ Tε are uniformly bounded, i.e., there exists a constant c such

that ∥
∥
∥
∥

∑

n

εn(idSp ⊗Dn)(x)

∥
∥
∥
∥

p

≤ c

∥
∥
∥
∥

∑

n

(idSp ⊗Dn)(x)

∥
∥
∥
∥

p

holds for all choices of signs (εn) and x ∈ Lp(B(`2)⊗̄M). But this inequality

is a direct consequence of the noncommutative Burkholder-Gundy inequalities

[PX1, JX1]. Moreover, the constant c depends only on p.

Theorem 6.2: Let M be a hyperfinite von Neumann algebra. Let 2 < p <∞,

and let (xn) ⊂ Lp(M) be a sequence of unit vectors, which converges weakly

to 0. Then there exist constants 0 ≤ α, β ≤ 1, depending only on (xn), and a

subsequence (x̃n) of (xn) such that

∥
∥
∥
∥

∑

n

an ⊗ x̃n

∥
∥
∥
∥

p

∼cp

max

{(
∑

n

‖an‖p
p

)1/p

, α

∥
∥
∥
∥

(
∑

n

a∗nan

)1/2∥
∥
∥
∥

p

, β

∥
∥
∥
∥

(
∑

n

ana
∗
n

)1/2∥
∥
∥
∥

p

}

holds for all finite sequences (an) ⊂ Sp.

Proof. The first part of the proof is to show that we can reduce our problem

to the case where Lp(M) has a completely unconditional FDD. To this end we

first use a standard procedure to reduce M to a von Neumann algebra with

separable predual (see [GGMS, Appendix]). Indeed, assume that M is σ-finite

and let ϕ be a normal faithful state on M. Let A ⊂ M be a countable subset,

and let MA be the von Neumann subalgebra generated by σϕ
t (a) with a ∈ A

and t ∈ Q. Then MA has separable predual. Moreover, MA is ϕ-invariant.

Consequently, there is a normal faithful conditional expectation from M onto

MA, thus Lp(MA) is a complemented subspace of Lp(M). Now writing each
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xn as a convergent series of elements from MD1/p: xn =
∑

k ankD
1/p , we can

take {ank : n, k ∈ N} as A. Then xn ∈ Lp(MA). Therefore, replacing M by

MA, we may assume that M∗ is separable.

Now if M is semifinite, then by [P1, Theorem 3.4] M has an increasing

filtration of finite dimensional subalgebras; so as in the proof of Lemma 6.1,

we deduce that Lp(M) has a completely unconditional FDD. To treat the case

where M is of type III, we use another standard trick in order to ensure that

we may work with a factor. To this end, we consider the crossed product

R =
⊗

n∈N
(M, ϕ) o G between the infinite tensor product

⊗

n∈N
(M, ϕ) and

the discrete group G of all finite permutations on N. Any finite permutation

acts on the infinite tensor product by shuffling the corresponding coordinates.

Clearly, we also have a normal faithful conditional expectation E : R → M
obtained by first projecting onto the identity element of G and then to the

first component in the infinite tensor product. This implies that Lp(M) can

be identified as a (complemented) subspace of Lp(R). On the other hand,

according to [HW, Proof of Theorem 2.6], R is a hyperfinite factor. Thus R is

of type IIIλ for some 0 ≤ λ ≤ 1 (see [C, H2]). Therefore, Lemma 6.1 implies that

Lp(R) has a completely unconditional FDD given by a filtration (Ek) of normal

faithful conditional expectations. In the remainder of the proof, replacing M
by R if necessary, we may assume that Lp(M) itself has this FDD.

The second part of the proof follows very closely its commutative model (see

[JMST, Theorem 1.14]). Using the gliding hump procedure, we may find a

perturbation of a subsequence (x̂n) and a corresponding subsequence (Êk) such

that

(i) Ên(x̂n) = x̂n;

(ii) Ên(x̂k) = 0 for all k > n;

(iii) limk Ên(x̂∗kx̂k) = yn and ‖Ên(x̂∗kx̂k) − yn‖p/2 ≤ ε2−k for k > n;

(iv) limk Ên(x̂kx̂
∗
k) = zn and ‖Ên(x̂kx̂

∗
k) − zn‖p/2 ≤ ε2−k for k > n.

Here ε > 0 is arbitrarily given and will be chosen after knowing the yn’s. It

follows immediately from (iii) that (yn) is a bounded Lp/2-martingale with

respect to (Ên). Since p/2 > 1, (yn) converges to some y ∈ Lp/2(M). Similarly,

we obtain that (zn) converges to some z ∈ Lp/2(M). We define α = ‖y‖1/2
p/2

and β = ‖z‖1/2
p/2. Passing to subsequences of (x̂n) and (Êk) if necessary, we may
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further assume
∥
∥Ên−1(x̂∗nx̂n)−y

∥
∥

p/2
≤ 2−(n+1)‖y‖p/2 ,

∥
∥Ên−1(x̂nx̂

∗
n)−z

∥
∥

p/2
≤ 2−(n+1)‖z‖p/2 .

Note that (i) and (ii) imply that (x̂n) is a martingale difference sequence with re-

spect to (Ên). Thus applying the noncommutative Burkholder inequality [JX1],

we find, for any an ∈ Sp,

∥
∥
∥
∥

∑

n

an ⊗ x̂n

∥
∥
∥
∥

p

∼cp

(
∑

n

‖an ⊗ x̂n‖p
p

)1/p

+

∥
∥
∥
∥

∑

n

a∗nan ⊗ Ên−1(x̂∗nx̂n)

∥
∥
∥
∥

1/2

p/2

+

∥
∥
∥
∥

∑

n

ana
∗
n ⊗ Ên−1(x̂nx̂

∗
n)

∥
∥
∥
∥

1/2

p/2

.

From perturbation, we have 1/2 ≤ ‖x̂n‖p ≤ 2, so the first diagonal term on the

right is fine. On the other hand, the triangle inequality implies
∥
∥
∥
∥

∑

n

a∗nan ⊗ Ên−1(x̂∗nx̂n) −
∑

n

a∗nan ⊗ y

∥
∥
∥
∥

p/2

≤
∑

n

‖a∗nan‖‖Ên−1(x̂∗nx̂n) − y‖p/2

≤ 1

2
‖y‖p/2 sup

n
‖a∗nan‖p/2 ≤ α2

2

∥
∥
∥
∥

∑

n

a∗nan

∥
∥
∥
∥

p/2

.

It follows that
∣
∣
∣
∣

∥
∥
∥
∥

∑

n

a∗nan ⊗ Ên−1(x̂∗nx̂n)

∥
∥
∥
∥

p/2

−
∥
∥
∥
∥

∑

n

a∗nan ⊗ y

∥
∥
∥
∥

p/2

∣
∣
∣
∣
≤ α2

2

∥
∥
∥
∥

∑

n

a∗nan

∥
∥
∥
∥

p/2

.

However,
∥
∥
∥
∥

∑

n

a∗nan ⊗ y

∥
∥
∥
∥

p/2

= α2

∥
∥
∥
∥

∑

n

a∗nan

∥
∥
∥
∥

p/2

.

Therefore, we deduce
∥
∥
∥
∥

∑

n

a∗nan ⊗ Ên−1(x̂∗nx̂n)

∥
∥
∥
∥

p/2

∼c α
2

∥
∥
∥
∥

∑

n

a∗nan

∥
∥
∥
∥

p/2

.

The same argument applies to the last term on the row norm. Keeping in mind

that (x̂n) is a perturbation of a subsequence (x̃n) of (xn) and going back to this

subsequence, we get the announced result.

As a first application, we present an operator space version of the Kadec-

Pe lzsyński alternative. For this we need some notation from the theory of
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operator spaces. The spaces Cp and Rp are defined as the column and row

subspaces of Sp, respectively. Namely,

Cp = span {ek1 : k ∈ N} and Rp = span {e1k : k ∈ N} .

Note that as Banach spaces, Cp and Rp are isometric to `2 by identifying both

(ek1) and (e1k) with the canonical basis (ek) of `2. We will adopt this identifica-

tion in the sequel. This permits us to consider the intersection Cp ∩Rp. Recall

that the operator space structures of these spaces are determined as follows.

For any finite sequence (ak) ⊂ Sp,

∥
∥
∥
∥

∑

k

ak ⊗ ek

∥
∥
∥
∥

Sp(Cp)

=

∥
∥
∥
∥

(
∑

k

a∗kak

)1/2∥
∥
∥
∥

p

,

∥
∥
∥
∥

∑

k

ak ⊗ ek

∥
∥
∥
∥

Sp(Rp)

=

∥
∥
∥
∥

(
∑

k

aka
∗
k

)1/2∥
∥
∥
∥

p

and
∥
∥
∥
∥

∑

k

ak ⊗ ek

∥
∥
∥
∥

Sp(Cp∩Rp)

= max

{∥
∥
∥
∥

(
∑

k

a∗kak

)1/2∥
∥
∥
∥

p

,

∥
∥
∥
∥

(
∑

k

aka
∗
k

)1/2∥
∥
∥
∥

p

}

.

Recall that a sequence (xk) in a Banach space X is said to be semi-normalized

if infk ‖xk‖ > 0 and supk ‖xk‖ <∞.

Corollary 6.3: Assume that M is hyperfinite. Let 2 ≤ p < ∞ and (xn) ⊂
Lp(M) be a semi-normalized sequence which converges to 0 weakly. Then (xn)

contains a subsequence (x̃n) which is completely equivalent to the canonical

basis of `p, Cp, Rp or Cp ∩Rp.

Proof. Assume p > 2. Let (x̃n) be the subsequence from Theorem 6.2. If

α = β = 0, then (x̃n) is completely equivalent to the basis of `p. If α > 0 and

β = 0, then we find a copy of Cp by virtue of (2.4). Similarly, if α = 0 and

β > 0 it turns out to be Rp. The case α > 0 and β > 0 yields Cp ∩Rp.

A basis (xk) of X ⊂ Lp(M) is called symmetric if there exists a positive

constant λ such that
∥
∥
∥
∥

∑

k

εkαπ(k)xk

∥
∥
∥
∥

p

≤ λ

∥
∥
∥
∥

∑

k

αkxk

∥
∥
∥
∥

p

holds for finite sequences (αk) ⊂ C, εk = ±1 and permutations π of the positive

integers. In this case, X is called a symmetric space. The least constant λ (over
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all possible symmetric bases of X) is denoted by sym(X). Again, we transfer

this definition to the operator space setting: (xk) is completely symmetric if
∥
∥
∥
∥

∑

k

εkaπ(k) ⊗ xk

∥
∥
∥
∥

p

≤ λ

∥
∥
∥
∥

∑

k

ak ⊗ xk

∥
∥
∥
∥

p

holds for finite sequences (ak) ⊂ Sp, εk = ±1 and permutations π. If X is a

completely symmetric space, the relevant constant is denoted by symcb(X). It

is clear that the four spaces in the previous corollary are completely symmetric.

Thus we deduce the following

Corollary 6.4: Let M and p be as above. Then every infinite dimensional

subspace of Lp(M) contains an infinite completely symmetric basic sequence.

It is not known whether the assertion above holds for 1 ≤ p < 2. This problem

is open even for scalar coefficients. On the other hand, we also do not know

whether the hyperfiniteness assumption can be removed for 2 < p < ∞. We

refer to [RX] and [R1] for different versions of the Kadec-Pe lczyński alternative,

which are most often at the Banach space level.

We now show that conversely all completely symmetric subspaces of non-

commutative Lp are only those found in Corollary 6.3. The next result is our

starting point.

Theorem 6.5: Let M be a von Neumann algebra, 2 ≤ p < ∞ and xij ∈
Lp(M). Then

(

E

∥
∥
∥
∥

n∑

i=1

εixi π(i)

∥
∥
∥
∥

p

p

)1/p

∼cp

max

{(
1

n

n∑

i,j=1

‖xij‖p
p

)1/p

,

∥
∥
∥
∥

(
1

n

n∑

i,j=1

(x∗ijxij + xijx
∗
ij)

)1/2∥
∥
∥
∥

p

}

.

Here the expectation E is taken over all choices of signs εi = ±1 and all permu-

tations π on {1, . . . , n}.

Proof. Again, we can assume that M is equipped with a normal faithful state

ϕ. We consider Ω = {−1, 1}n × Πn, where Πn is the set of all permuta-

tions on {1, . . . , n}. The Haar measure on this group is the product measure

µ = ε ⊗ ν of the normalized counting measures ε and ν on {−1, 1}n, Πn, re-

spectively. The underlying von Neumann algebra is then given by (N , ψ) =
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L∞(Ω, 2Ω, µ) ⊗ (M, ϕ). In order to apply the noncommutative Burkholder in-

equality we have to use the right filtration taken from [JMST]. For k = 1, . . . , n

we consider the functions fk : Πn → R, fk(π) = π(k). The σ-algebra Σ2
k is de-

fined as the smallest σ-algebra on Πn making f1, . . . , fk measurable. By Σ1
k we

denote the smallest σ-algebra on {−1, 1}n making ε1, . . . , εk measurable, where

ε1, . . . , εn are the coordinate functions on {−1, 1}n. Let Σk be the product σ-

algebra Σ1
k ×Σ2

k. We then define the filtration (Nk)k of ψ-invariant subalgebras

by

Nk = L∞(Ω,Σk, µ) ⊗M .

Let Ek be the conditional expectation associated to Σk. Then Ek = Ek ⊗ id is

the state preserving conditional expectation from N onto Nk.

After these preliminaries, we consider

x =

n∑

i=1

εixi π(i) ∈ Lp(N ).

Let dk = dxk be the martingale differences of x with respect to (Nk). We note

that dk = εkxk π(k). Therefore, the noncommutative Burkholder inequality

[JX1] implies

‖x‖p ≤ cp max

{( n∑

k=1

‖xk π(k)‖p
p

)1/p

,

∥
∥
∥
∥

n∑

k=1

Ek−1(x∗k π(k)xk π(k) + xk π(k)x
∗
k π(k))

∥
∥
∥
∥

1/2

p/2

}

.

Clearly, for every k = 1, . . . , n, we have

‖xk π(k)‖p
p =

n∑

j=1

ν({π : π(k) = j}) ‖xkj‖p
p

=
n∑

j=1

(n− 1)!

n!
‖xkj‖p

p =
1

n

n∑

j=1

‖xkj‖p
p .

Hence,
( n∑

k=1

‖xk π(k)‖p
p

)1/p

=

(
1

n

n∑

k,j=1

‖xkj‖p
p

)1/p

.

Let E2
k be the conditional expectation onto L∞(Πn,Σ

2
k, µ). We observe that

Ek−1(x∗k π(k)xk π(k)) = (E2
k−1 ⊗ id)(x∗k π(k)xk π(k)) .
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The atoms in Σ2
k−1 are indexed by (k−1)-tuples (i1, . . . , ik−1) of distinct integers

in {1, . . . , n}. More precisely,

A(i1,...,ik−1) = {π : π(1) = i1, . . . , π(k − 1) = ik−1}.

Clearly, the cardinality of A(i1,...,ik−1) is that of Πn−(k−1), i.e., (n − k + 1)!.

Therefore, letting αk = (n− k + 1)!/n!, we get

(E2
k−1 ⊗ id)(x∗k π(k)xk π(k))

=
∑

(i1,...,ik−1)

1lA(i1,...,ik−1)
α−1

k

∫

A(i1,...,ik−1)

x∗k π(k)xk π(k) dν(π) .

For fixed (i1, . . . , ik−1), letting B = {i1, . . . , ik−1}, we have

α−1
k

∫

A(i1,...,ik−1)

x∗k π(k)xk π(k) dν(π) =
1

n− k + 1

∑

j /∈B

x∗kjxkj .

Hence for all k ≤ n/2 we deduce

(E2
k−1 ⊗ id)(x∗k π(k)xk π(k)) ≤

2

n

n∑

j=1

x∗kjxkj .

Let us assume temporarily that xkj = 0 for k > n/2. Then combining the

previous estimates, we obtain

n∑

k=1

Ek−1(x∗k π(k)xk π(k)) ≤
2

n

n∑

k,j=1

x∗kjxkj

for all permutations π. The same argument applies to xk π(k)x
∗
k π(k) too. There-

fore, we get the upper estimate under the additional assumption that xkj = 0

for k > n/2. The general case then follows from triangle inequality.

For the lower estimate we use the Jensen inequality and the orthogonality of

the Rademacher variables (noting that p/2 ≥ 1):

‖x‖2
p = E ‖x∗x‖p/2 ≥ ‖E(x∗x)‖p/2

=

∥
∥
∥
∥

n∑

k=1

∫

Πn

x∗k π(k)xk π(k)

∥
∥
∥
∥

p/2

=

∥
∥
∥
∥

1

n

n∑

k,j=1

x∗kjxkj

∥
∥
∥
∥

p/2

.

The same calculation involving xx∗ yields the other square function estimate.

Since Lp(N ) has cotype p, we easily find the missing estimate on the diagonal

term.
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Corollary 6.6: Let A and M be von Neumann algebras and 2 ≤ p <∞. Let

(xk)1≤k≤n ⊂ Lp(M) and λ > 0 such that

∥
∥
∥
∥

n∑

k=1

εkaπ(k) ⊗ xk

∥
∥
∥
∥

p

≤ λ

∥
∥
∥
∥

n∑

k=1

ak ⊗ xk

∥
∥
∥
∥

p

holds for all εk = ±1, all permutations π on {1, . . . , n} and coefficients ak ∈
Lp(A). Then there are constants α, β and γ, depending only on (xk), such that

∥
∥
∥
∥

n∑

k=1

ak ⊗ xk

∥
∥
∥
∥

p

∼λ2cp
max

{

α

( n∑

k=1

‖ak‖p
p

)1/p

,

β

∥
∥
∥
∥

( n∑

k=1

a∗kak

)1/2∥
∥
∥
∥

p

, γ

∥
∥
∥
∥

( n∑

k=1

aka
∗
k

)1/2∥
∥
∥
∥

p

}

holds for all ak ∈ Lp(A).

Proof. This is an easy consequence of Theorem 6.5. Indeed, we have

1

λ

∥
∥
∥
∥

n∑

k=1

ak ⊗ xk

∥
∥
∥
∥

p

≤
(

E

∥
∥
∥
∥

n∑

k=1

εkaπ(k) ⊗ xk

∥
∥
∥
∥

p

p

)1/p

≤ λ

∥
∥
∥
∥

n∑

k=1

ak ⊗ xk

∥
∥
∥
∥

p

.

Then we deduce the assertion with

α =

(
1

n

n∑

k=1

‖xk‖p
p

)1/p

, β =

∥
∥
∥
∥

(
1

n

n∑

k=1

x∗kxk

)1/2∥
∥
∥
∥

p

,

γ =

∥
∥
∥
∥

(
1

n

n∑

k=1

xkx
∗
k

)1/2∥
∥
∥
∥

p

.

Let us introduce a more notation. For a Banach (or operator) space X

and positive real α, αX denotes X but equipped with the norm α‖ ‖. For

convenience, set αX = {0} if α = 0. Recall that the Banach-Mazur distance

between two Banach spaces X and Y is

d(X, Y ) = inf
{
‖T ‖ ‖T−1‖ : T : E → F isomorphism

}
.

Similarly, we define the operator space analogue dcb(X,Y ) by replacing the

norm of an isomorphism by the cb-norm of a complete isomorphism.

Corollary 6.7: Let 2 ≤ p < ∞ and X be an n-dimensional subspace of

Lp(M). Then
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(i) there exist nonnegative α and β such that

d(X, α`np ∩ β`n2 ) ≤ cp sym(X)2 ;

(ii) there exist nonnegative α, β and γ such that

dcb(X, α`
n
p ∩ βCn

p ∩ γRn
p ) ≤ cp symcb(X)2 .

Proof. Let (x1, . . . , xn) be a (completely) symmetric basis of X with constant

λ ≤ 2 sym(X) (or λ ≤ 2 symcb(X)). Such a basis exists for dimX <∞. It then

remains to apply the previous corollary with A = C for (i) and A = B(`2) for

(ii).

Corollary 6.8: Let 2 ≤ p < ∞ and X ⊂ Lp(M) be an infinite dimensional

subspace.

(i) If X is symmetric, then X is isomorphic to `p or `2.

(ii) If X is completely symmetric, then X is completely isomorphic to `p, Cp,

Rp or Cp ∩Rp.

Proof. We prove only (ii). Then the proof of (i) is simpler; it is done just by

replacing vector coefficients by scalar ones. Let (xk) be a completely symmetric

basis of X with constant λ. For every n ∈ N, set

αn =

(
1

n

n∑

k=1

‖xk‖p
p

)1/p

, βn =

∥
∥
∥
∥

(
1

n

n∑

k=1

x∗kxk

)1/2∥
∥
∥
∥

p

, γn =

∥
∥
∥
∥

(
1

n

n∑

k=1

xkx
∗
k

)1/2∥
∥
∥
∥

p

.

Note that αn, βn and γn are less than or equal to supk ‖xk‖p. Passing to

subsequences if necessary, we may assume that the three sequences (αn), (βn)

and (γn) converge respectively to α, β and γ. Thus by Corollary 6.6, for any

finite sequence (ak) ⊂ Sp we have

∥
∥
∥
∥

∑

k

ak ⊗ xk

∥
∥
∥
∥

p

∼λ2cp
max

{

α

(
∑

k

‖ak‖p
p

)1/p

,

β

∥
∥
∥
∥

(
∑

k

a∗kak

)1/2∥
∥
∥
∥

p

, γ

∥
∥
∥
∥

(
∑

k

aka
∗
k

)1/2∥
∥
∥
∥

p

}

.

Then using (2.4), we deduce that X is completely isomorphic to `p if β = γ = 0,

to Cp if β > 0 and γ = 0, to Rp if β = 0 and γ > 0, and finally to Rp ∩ Cp if

β > 0 and γ > 0.
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Remark 6.9: It will be shown in [JR] that every subsymmetric basic sequence

in Lp(M) is symmetric. A sequence (ek) is called subsymmetric if
∥
∥
∥
∥

∑

k

εkak ⊗ ejk

∥
∥
∥
∥

p

∼c

∥
∥
∥
∥

∑

k

ak ⊗ ek

∥
∥
∥
∥

holds for all increasing sequences (jk) of integers. Therefore, Corollary 6.8 yields

a characterization of subspaces of noncommutative Lp with a subsymmetric

basis.

If M is finite, we can eliminate the two spaces Cp and Rp in Corollary 6.8

(ii).

Corollary 6.10: Let 2 < p < ∞ and M be a finite von Neumann algebra.

Then Cp and Rp do not completely embed into Lp(M).

Proof. We assume that ϕ is a normal faithful tracial state on M. Suppose that

Cp completely embeds into Lp(M). Namely, there exists an infinite sequence

(xk) ⊂ Lp(M) such that
∥
∥
∥
∥

∑

k

ak ⊗ xk

∥
∥
∥
∥

p

∼
∥
∥
∥
∥

(
∑

k

a∗kak

)1/2∥
∥
∥
∥

p

holds for all (ak) ⊂ Sp. In particular, if α = (αik) ∈ Sp, then

‖α‖Sp ∼
∥
∥
∥
∥

∑

i,k

αike1 i ⊗ xk

∥
∥
∥
∥

Lp(B(`2)⊗̄M)

.

Note that for

x =
∑

i,k

αike1 i ⊗ xk and xi =
∑

k

αikxk ,

the Hölder inequality implies

‖x‖2
L2(B(`2)⊗̄M) = ‖xx∗‖L1(B(`2)⊗̄M) =

∥
∥
∥
∥

∑

i

xix
∗
i

∥
∥
∥
∥

L1(M)

≤
∥
∥
∥
∥

∑

i

xix
∗
i

∥
∥
∥
∥

Lp/2(M)

= ‖x‖2
Lp(B(`2)⊗̄M) .

Here the Lp(M) are defined in terms of the trace ϕ. This tells us that on the

subspace Y = span{e1 i ⊗ xk} the norms in Lp ∩ L2 and Lp coincide. Thus we

have found an embedding of Sp into Lp(B(`2)⊗̄M)∩L2(B(`2)⊗̄M). According

to [J4] the latter space embeds into Lp(R) for a finite von Neumann algebra R.
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Thus we obtain an embedding of Sp into Lp(R). This is, however, absurd in

view of the results in [Su].

7. Bisymmetric and unitary invariant subspaces of Lp

We extend in this section the results in the previous one to the case of dou-

ble indices. Namely, we will determine the bisymmetric and unitary invariant

subspaces of noncommutative Lp-spaces for 2 < p < ∞. In particular, we

will characterize those unitary ideals which can embed into a noncommutative

Lp. For notational convenience, given a finite matrix x = (xij) with entries in

Lp(M) we introduce

γ0(x) =

(
∑

i,j

‖xij‖p
p

)1/p

,

γ1(x) =

(
∑

i

∥
∥
∥
∥

(
∑

j

x∗ijxij

)1/2∥
∥
∥
∥

p

p

)1/p

, γ2(x) =

(
∑

i

∥
∥
∥
∥

(
∑

j

xijx
∗
ij

)1/2∥
∥
∥
∥

p

p

)1/p

,

γ3(x) =

(
∑

j

∥
∥
∥
∥

(
∑

i

x∗ijxij

)1/2∥
∥
∥
∥

p

p

)1/p

, γ4(x) =

(
∑

j

∥
∥
∥
∥

(
∑

i

xijx
∗
ij

)1/2∥
∥
∥
∥

p

p

)1/p

,

γ5(x) =

∥
∥
∥
∥

(
∑

i,j

x∗ijxij

)1/2∥
∥
∥
∥

p

, γ6(x) =

∥
∥
∥
∥

(
∑

i,j

xijx
∗
ij

)1/2∥
∥
∥
∥

p

,

γ7(x) =

∥
∥
∥
∥

∑

i,j

eij ⊗ xij

∥
∥
∥
∥

Lp(B(`2)⊗̄M))

, γ8(x) =

∥
∥
∥
∥

∑

i,j

eji ⊗ xij

∥
∥
∥
∥

Lp(B(`2)⊗̄M))

.

Theorem 7.1: Let 2 ≤ p < ∞ and A and M be von Neumann algebras. Let

a = (aij) and x = (xij) be two n×n matrices with entries in Lp(A) and Lp(M),

respectively. Then

(

E

∥
∥
∥
∥

n∑

i,j=1

εiε
′
j aij ⊗ xπ(i) π′(j)

∥
∥
∥
∥

p

)1/p

∼cp

1

n2/p
γ0(a)γ0(x) +

1

n1/p+1/2

4∑

k=1

γk(a)γk(x) +
1

n

8∑

k=5

γk(a)γk(x) .

Here the expectation E is taken over independent copies εi, ε
′
i of Rademacher

variables and independent copies π and π′ of permutations on {1, . . . , n}.
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Proof. This is an iteration of Theorem 6.5. By that theorem, we get

(

E

∥
∥
∥
∥

n∑

i,j=1

εiε
′
jaij ⊗ xπ(i)π′(j)

∥
∥
∥
∥

p

)1/p

∼

1

n1/p

(

Eε′,π′

∑

i,k

∥
∥
∥
∥

∑

j

ε′jaij ⊗ xk π′(j)

∥
∥
∥
∥

p

p

)1/p

+
1

n1/2

(

Eε′,π′

∥
∥
∥
∥

∑

i,k,j

ε′j e(i,k),(1,1) ⊗ aij ⊗ xk π′(j)

∥
∥
∥
∥

p

p

)1/p

+
1

n1/2

(

Eε′,π′

∥
∥
∥
∥

∑

i,k,j

ε′j e(1,1),(i,k) ⊗ aij ⊗ xk π′(j)

∥
∥
∥
∥

p

p

)1/p
def
= I + II + III .

Here we use e(i,k),(j,l) to denote the matrix units of B(`2(N2)), so (i, k) and (j, l)

index rows and columns, respectively. We apply Theorem 6.5 for a second time

to the first term on the right hand side and find

I ∼ 1

n2/p
γ0(a)γ0(x) +

1

n1/p+1/2

(
∑

i,k

∥
∥
∥
∥

∑

j,l

e(j,l),(1,1) ⊗ aij ⊗ xkl

∥
∥
∥
∥

p

p

)1/p

+
1

n1/p+1/2

(
∑

i,k

∥
∥
∥
∥

∑

j,l

e(1,1),(j,l) ⊗ aij ⊗ xkl

∥
∥
∥
∥

p

p

)1/p

.

Identifying e(j,l),(1,1) with ej1 ⊗ el1 (up to a conjugation by a unitary), we have

∥
∥
∥
∥

∑

j,l

e(j,l),(1,1) ⊗ aij ⊗ xkl

∥
∥
∥
∥

p

=

∥
∥
∥
∥

(
∑

j

ej1 ⊗ aij

)

⊗
(

∑

l

el1 ⊗ xkl

)∥
∥
∥
∥

p

=

∥
∥
∥
∥

(
∑

j

a∗ijaij

)1/2∥
∥
∥
∥

p

∥
∥
∥
∥

(
∑

l

x∗klxkl

)1/2∥
∥
∥
∥

p

.

We deal with similarly the other term containing e(1,1),(j,l) and then deduce

that

I ∼ 1

n2/p
γ0(a)γ0(x) +

1

n1/p+1/2
γ1(a)γ1(x) +

1

n1/p+1/2
γ2(a)γ2(x) .

Similar arguments apply to II and III too. II is again equivalent to a sum

of three terms. Let us consider, for instance, the second one on column norm,
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which is

1

n

∥
∥
∥
∥

∑

j,l

∑

i,k

e(j,l),(1,1) ⊗ e(i,k),(1,1) ⊗ aij ⊗ xkl

∥
∥
∥
∥

p

=
1

n

∥
∥
∥
∥

∑

i,j

e(i,j),(1,1) ⊗ aij

∥
∥
∥
∥

p

∥
∥
∥
∥

∑

k,l

e(k,l),(1,1) ⊗ xkl

∥
∥
∥
∥

p

=
1

n
γ5(a)γ5(x) .

Then we see that

II ∼ 1

n1/p+1/2
γ3(a)γ3(x) +

1

n
γ5(a)γ5(x) +

1

n
γ7(a)γ7(x) .

Finally, III yields the three missing terms.

Permutations and (ε1, . . . , εn) induce permutation and diagonal matrices,

which are, of course, unitary. If the expectation in Theorem 7.1 is taken over

all unitary matrices, we get a much simpler equivalence.

Theorem 7.2: Under the assumption of Theorem 7.1, we have

(

E

∥
∥
∥
∥

n∑

i,j,k,l=1

uikvlj aij ⊗ xkl

∥
∥
∥
∥

p

)1/p

∼cp

1

n

8∑

k=5

γk(a)γk(x) .

Here the expectation E is the integration in (uik) and (vlj) on U(n) × U(n),

where U(n) is the n× n unitary group equipped with Haar measure.

Proof. The proof is similar to that of Theorem 7.1. Instead of the noncommu-

tative Burkholder inequality via Theorem 6.5, we now use the noncommutative

Khintchine inequality with help of the classical fact that (uik) can be replaced

by a Gaussian matrix n−1/2 (gij), where the gij are independent Gaussian vari-

ables of mean-zero and variance 1 (see [MP]). Thus

(

E

∥
∥
∥
∥

n∑

i,j,k,l=1

uikvlj aij ⊗ xkl

∥
∥
∥
∥

p

)1/p

∼c
1

n

(

E

∥
∥
∥
∥

n∑

i,j,k,l=1

gik g
′
lj aij ⊗ xkl

∥
∥
∥
∥

p

)1/p

.

It then remains to repeat the arguments in the proof of Theorem 7.1 by using
(

E

∥
∥
∥
∥

∑

i,k

gik yik

∥
∥
∥
∥

p

)1/p

∼c
√

p

∥
∥
∥
∥

(
∑

i,k

y∗ikyik

)1/2∥
∥
∥
∥

p

+

∥
∥
∥
∥

(
∑

i,k

yiky
∗
ik

)1/2∥
∥
∥
∥

p

for any yik in a noncommutative Lp (see [P1]).
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We say that (xij) is a bisymmetric basis of a subspace X ⊂ Lp(M) if every

entry xij is nonzero, the linear span of the xij is dense in X and there exists a

constant λ such that
∥
∥
∥
∥

∑

i,j

εiε
′
jaπ(i) π′(j)xij

∥
∥
∥
∥

p

≤ λ

∥
∥
∥
∥

∑

i,j

aijxij

∥
∥
∥
∥

p

holds for all finite scalar matrices (aij), all εi = ±1, ε′j = ±1 and all permuta-

tions π and π′. It is easy to check that (xij) is indeed a basis of X according to

an appropriate order, for instance, the one defined as follows. Let e1 = x11 and

assume defined e1, . . . , en2 . Then we set en2+j = xn+1,j for j = 1, . . . , n + 1,

and en2+n+1+i = xn+1−i,n+1 for i = 1, . . . , n. Similarly, we define completely

bisymmetric bases by replacing scalar coefficients by matrices.

Recall that `p(`2) denotes the space of all scalar matrices a = (aij) such that

(
∑

i

(
∑

j

|aij |2
)p/2)1/p

<∞

and is equipped with the natural norm. `p(`2)t is the space of all a such that

at ∈ `p(`2), where at denotes the transpose of a. In the operator space setting,

these spaces yield four different spaces `p(Cp), `p(Rp), `p(Cp)t and `p(Rp)t, cor-

responding respectively to the norms γk for 1 ≤ k ≤ 4 introduced at the be-

ginning of the present section. Accordingly, the last four norms there give four

other operator spaces Cp(N2), Rp(N2), Sp and St
p. The following is the matrix

analogue of Corollary 6.8. The proof is almost identical to that of Corollary 6.8

but now via Theorem 7.1.

Corollary 7.3: Let 2 ≤ p <∞ and X ⊂ Lp(M) be a subspace.

(i) If X has a bisymmetric basis given by an infinite matrix, then X is iso-

morphic to one of the following spaces

`p(N2), `p(`2), `p(`2)t, `p(`2) ∩ `p(`2)t, Sp, `2(N2) .

(ii) If X has a completely bisymmetric basis given by an infinite matrix, then

X is completely isomorphic to one of the following spaces

`p(N2), `p(Cp), `p(Rp), `p(Cp)t, `p(Rp)t, Sp, Sp
t, Cp(N2), Rp(N2)

or one possible intersection of them.
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Remark 7.4: The relations between the 9 building blocks in (ii) above are shown

by the following diagram

Sp

�� $$
IIIIIIIIII
Rp(N2)

zzuuuuuuuuu

$$
JJJJJJJJJ
Cp(N2)

zzttttttttt

$$
IIIIIIIII
Sp

t

zzuu
uu

uu
uu

uu

��

`p(Rp)

$$
IIIIIIIII
`p(Cp)t

��

`p(Rp)t

��

`p(Cp)

zzuuuuuuuuu

`p(N2) `p(N2)

The arrows indicate complete contractions, e.g., Sp ⊂ `p(Rp) ∩ `p(Cp)t and

Cp(N2) ⊂ `p(Cp) ∩ `p(Cp)t. Thus not all intersections of these spaces are non-

trivial for some of them simplify. However, the four spaces on each of the first

two levels do not give any nontrivial intersection, so yield 16 pairwise distinct

spaces.

Remark 7.5: It is easy to see that all spaces appearing in the preceding corollary

(completely) embed really into a noncommutative Lp. Note that an interesting

embedding of `p(`2) ∩ `p(`2)t (or `p(Rp) ∩ `p(Cp)t in the operator space case)

is given by the noncommutative Khintchine inequality in Remark 3.4.

A bisymmetric basis (xij) of X is called (completely) unitary invariant if
∥
∥
∥
∥

∑

ij

uijaijxij

∥
∥
∥
∥

p

≤ λ

∥
∥
∥
∥

∑

ij

aijxij

∥
∥
∥
∥

p

holds for (aij) in C (in Sp). Recall that if E is a separable symmetric sequence

space, the associated unitary ideal SE is defined to be the closure of finite

matrices with respect to the norm

‖a‖SE = ‖(sk(a))k‖E ,

where (sk(a))k is the sequence of the singular numbers of a. It is well-known

that the matrix units of B(`2) form a unitary invariant basis of SE .

Corollary 7.6: Let 2 ≤ p <∞ and X ⊂ Lp(M) be a subspace.

(i) If X has a unitary invariant basis, then X is isomorphic to Sp or S2.

Consequently, a unitary ideal SE embeds in Lp(M) if and only if E = `p

or E = `2.
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(ii) If X has a completely unitary invariant basis, then X is completely iso-

morphic to one of the 16 spaces: Sp, Sp
t, Cp(N2), Rp(N2) and their

intersections.

Proof. This is an immediate consequence of the preceding corollary since all

spaces there but those in the present corollary are not unitary invariant. Alter-

nately, we can also follow the proof of Corollary 7.3 by using Theorem 7.2.
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[R1] N. Randrianantoanina. Kadec-Pe lczyński decomposition for Haagerup Lp-spaces,

Mathematical Proceedings of the Cambridge Philosophical Society 132 (2002), 137–

154.

[R2] N. Randrianantoanina, Non-commutative martingale transforms, Journal of Func-

tional Analysis 194 (2002), 181–212.

[R3] N. Randrianantoanina, A weak type inequality for non-commutative martingales and

applications, Proceedings of the London Mathematical Society 91 (2005), 509–542.

[R4] N. Randrianantoanina, Conditionned square functions for noncommutative martin-

gales, The Annals of Probability 35 (2007), 1309–1370.

[RX] Y. Raynaud and Q. Xu, On subspaces of non-commutative Lp-spaces, Journal of

Functional Analysis 203 (2003), 149–196.

[Ro] H. P. Rosenthal, On the subspaces of Lp (p > 2) spanned by sequences of independent

random variables, Israel Journal of Mathematics 8 (1970), 273–303.

[S] D. Shlyakhtenko, Free quasi-free states, Pacific Journal of Mathematics 177 (1997),

329–368.
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